ВЛИЯНИЕ ДОБАВОК В ПОРТЛАНДЦЕМЕНТ ГЛИНИТА ИЗ ПОЛИМИНЕРАЛЬНОЙ ГЛИНЫ НА СВОЙСТВА ЦЕМЕНТНОГО КАМНЯ

Р. З. Рахимов, Н. Р. Рахимова, А. Р. Гайфуллин, Казанский государственный архитектурно-строительный университет

Ключевые слова: портландцемент, добавка, глинит, глина, минерал, прокаливание, помол, цементный камень. свойства

Key words: Portland cement, additive, glinit, clay, mineral, calcination, grinding, hardened cement paste, properties

Введение

Модификация тонкомолотыми минеральными добавками – одно из направлений решения проблем ресурсо-, энергосбережения и экологии в производстве и применении вяжущих веществ и материалов на их основе [1, 2]. Глубокое понимание механизмов гидратации портландцемента создает предпосылки для увеличения количества вводимых минеральных добавок. Это возможно только при расширении сырьевой базы таких минеральных добавок, как натуральные пуццоланы и активированные глины [3, 4]. Термически активированные глины классифицируются европейским стандартом EN 197-1-2000 как искусственные пуццоланы. Они используются с давних времен в качестве добавок в известковые вяжущие и цементы, связывающих образующийся при затворении их водой малопрочный неводостойкий гидроксид кальция в прочные водостойкие новообразования. Тонкодисперсная обожженная глина как пуццолановая добавка нашла применение в виде цемянки, глинита, аглопорита, горелых пород, керамзита и керамзитовой пыли [5, 6]. Цемянка – продукт обжига керамических материалов до спекания при температуре 900 °C и выше. Глинит получают измельчением глин, обожженных при температуре 600-800 °C [5, 7]. В последние десятилетия все больше внимания уделяется использованию в качестве пуццолановой добавки метакаолина [8-11], получаемого прокаливанием каолиновых глин при температуре 600-700 °C. Такая добавка обеспечивает повышение прочности, химической стойкости, морозостойкости и долговечности изделий и конструкций [12-14]. В состав качественных сортов метакаолина, получаемых прокаливанием каолиновых глин с содержанием каолинита 90% и более [10, 11], входит 50–55% SiO_2 и 40–45% Al_2O_3 . Между тем установлено [9, 15], что в технологии вяжущих можно использовать метакаолины, получаемые обжигом сырья с меньшим содержанием каолинита – 30-50%. Следует отметить, что широкомасштабному производству и применению метакаолина как пуццолана препятствуют, с одной стороны, ограниченность месторождений и запасов каолиновых глин во многих странах, в том числе в России, а с другой – высокая востребованность каолинов как наполнителей различных материалов и сырьевого компонента при производстве тонкой керамики.

В связи с этим в последнее время активизировались исследования пуццоланической активности термоактивированных глинистых минералов помимо каолинита и возможностей получения пуццолановых добавок из глинистого сырья с различным содержанием каолинита и даже полным его отсутствием, т. е. повсеместно распространенных обычных глин. Такие прокаленные глины все чаще используются в развивающихся странах [16]. Широкомасштабные исследования пуццоланической активности находящихся на территории СССР месторождений 207 разновидностей глин были проведены в 40-х годах прошлого века. Примечательно, что лишь 11% из них оказались непригодными для получения продукта с достаточной пуццоланической активностью [7].

Учитывая вышеизложенное, очевидно, целесообразно возобновить исследования и разработки в этом направлении с целью создания научной базы для организации производства пуццолановых добавок на основе местных глин во многих регионах страны.

Ниже приведены некоторые результаты исследований влияния добавок в портландцемент прокаленной полиминеральной глины, не содержащей каолинит.

Объекты и методы исследований

При проведении исследований использовали следующие материалы:

а) глину Сарай-Чекурчинского месторождения Республики Татарстан. Химический состав (в % на абсолютно сухую навеску): SiO₂ 68,52, Al₂O₃ 13,42, Fe₂O₃ 6,18, TiO₂ 0,86, MnO

0,10, CaO 1,33, MgO 1,66, Na₂O 1,20, K₂O 1,82, P₂O₅ 0,99, SO₃/S < 0,05, п.п.п. 4,62, H₂O 3,41. Количественный химический состав определяли с помощью спектрометра ARL OPTIM'X. Минералогический состав (в мас. %): кварц 28, слюда 10, ортоклаз 7, плагиоклаз 8, смешанно-слоистый глинистый минерал 40, хлорит 1, каолинит 3. Рентгенофазовый анализ проводили с использованием дифрактометра D8 Advance фирмы Bruker. Гранулометрический состав (в %): глинистые фракции 49,5, пылеватые фракции 37,1, песчаные фракции 13,4;

б) метакаолин ВМК производства OOO «Синерго» (г. Магнитогорск) (ТУ 572901-001-65767184-2010). Химический состав (в %): SiO_2 51,4, Al_2O_3 > 42, Fe_2O_3 0,8, H_2O < 0,5, п.п.п. < 1. Удельная поверхность 1200 м²/кг;

в) портландцемент ЦЕМ I 42,5 H (ПЦ 500-Д0-H) следующего химического состава (в мас. %): CaO 63, SiO₂ 20,5, Al₂O₃ 4,5, Fe₂O₃ 4,5, SO₃ 3. Минералогический состав (в мас. %): C₃S 67,0, C₂S 11,0, C₃A 4,0, C₃AF 15,0. Удельная поверхность 345 м²/кг (по цементу), насыпная плотность 1000 г/л, нормальная густота 26%, начало схватывания 2 ч 50 мин, конец схватывания 4 ч 10 мин.

Прокаливание глины производили при 400, 600 и 800 °C со скоростью подогрева 1,7, 2,5 и 3,3 °C/мин и изотермической выдержкой при этой температуре в течение 3 ч. Прокаленную глину подвергали помолу в лабораторной мельнице МПЛ-1 до удельной поверхности 250, 500 и 800 м 2 /кг. Пуццоланическую активность прокаленных и молотых навесок глины определяли по изменению свойств портландцементного камня в зависимости от содержания добавок в портландцементе. Образцы цементного камня размером 20x20x20 мм, приготовленные из теста нормальной густоты, исследовали после термовлажной обработки по режиму 2 + 4 + 6 + 3 ч с изотермической выдержкой при 85 °C.

Результаты и обсуждение

В табл. 1–3 приведены результаты исследований изменения прочности при сжатии, средней плотности, водопоглощения и коэффициента размягчения цементного камня в зависимости от содержания в портландцементе сарай-чекурчинской глины, прокаленной при температуре 400, 600 и 800 $^{\circ}$ С и молотой до удельной поверхности соответственно 250, 500 и 800 м 2 /кг. Результаты исследований влияния добавок в портландцемент метакаолина на свойства цементного камня содержатся в табл. 4.

Таблица 1 Зависимость свойств цементного камня от содержания сарай-чекурчинской глины, молотой до удельной поверхности 250 м²/кг

Количество	Средняя	Предел прочности	Водопоглощение,	Коэффициент	
добавки, %	плотность, $\kappa \Gamma/M^3$	при сжатии, МПа	%	размягчения	
Температура прокаливания 400 ℃					
_	2270	57,3	1	0,92	
5	2340	83,2	2	0,97	
10	2335	79,0	2,23	0,975	
15	2318	70,1	2,25	0,975	
20	2298	64,1	2	0,98	
T емпература прокаливания $600~^{\circ}\mathrm{C}$					
_	2270	57,3	1	0,92	
5	2295	64,5	1,1	0,94	
10	2290	63,5	1,2	0,94	
15	2260	60,1	1,1	0,93	
20	2220	56,1	1	0,92	
T емпература прокаливания $800~^{\circ}\mathrm{C}$					
_	2270	57,3	1	0,92	
5	2320	74,1	1,8	0,95	
10	2315	70,5	1,8	0,96	
15	2290	66,1	1,85	0,96	
20	2260	60,1	1,75	0,96	

Количество добавки, %	Средняя плотность, кг/м ³	Предел прочности при сжатии, МПа	Водопоглощение,	Коэффициент размягчения	
Температура прокаливания 400 °C					
_	2270	57,3	1	0,92	
5	2255	75,5	0,8	0,93	
10	2246	65,5	0,8	0,935	
15	2232	55,5	0,8	0,925	
20	2212	48,3	0,9	0,905	
T емпература прокаливания $600~^{\circ}\!C$					
_	2270	57,3	1	0,92	
5	2316	84,1	1,9	0,935	
10	2315	73,1	2	0,945	
15	2274	63,1	2,1	0,945	
20	2239	55,1	2,1	0,925	
T емпература прокаливания $800~^{\circ}\!C$					
_	2270	57,3	1	0,92	
5	2355	94,1	1	0,95	
10	2351	86,1	1,1	0,96	
15	2314	74,1	1,2	0,965	
20	2286	65,2	1,3	0,95	

Таблица 3 Зависимость свойств цементного камня от содержания сарай-чекурчинской глины, молотой до удельной поверхности 800 м²/кг

	Сполука	Продод произооту	Волопоплонио	V as de de verre verre	
Количество	Средняя	Предел прочности	Водопоглощение,	Коэффициент	
добавки, %	плотность, кг/м ³	при сжатии, МПа	%	размягчения	
Температура прокаливания 400 °C					
_	2270	57,3	1	0,92	
5	2272	84,7	1,6	0,935	
10	2273	75,5	2,1	0,93	
15	2281	63,6	2,5	0,91	
20	2292	52,1	3,1	0,875	
Температура прокаливания 600 °C					
_	2270	57,3	1	0,92	
5	2261	67,1	2,2	0,94	
10	2255	62,1	3,1	0,95	
15	2254	52,3	3,7	0,945	
20	2253	45,3	3,9	0,91	
T емпература прокаливания $800~^{\circ}\!C$					
_	2270	57,3	1	0,92	
5	2275	94,6	1,1	0,95	
10	2298	84,1	1,2	0,98	
15	2321	68,1	1,3	0,975	
20	2333	55,2	1,4	0,95	

Анализ представленных в табл. 1—4 данных позволяет сделать следующие выводы о влиянии добавок в портландцемент прокаленной и молотой сарай-чекурчинской глины и метакаолина на прочность при сжатии, среднюю плотность, водопоглощение и коэффициент размягчения цементного камня:

1. Введение в портландцемент прокаленной при 400 °C сарай-чекурчинской глины приводит к следующим изменениям свойств цементного камня:

Количество добавки, %	Средняя плотность, кг/м ³	Предел прочности при сжатии, МПа	Водопоглощение, %	Коэффициент размягчения
_	2270	57,3	1	0,92
5	2298	74,0	1,7	0,925
10	2239	62,9	1,8	0,96
15	2134	52,3	1,95	0,93
20	2121	50,7	3	0,935

- 5—20% молотой до удельной поверхности 250 м 2 /кг глины повышает прочность при сжатии на 11,9—45,2%, водопоглощение с 1 до 2—2,25%, коэффициент размягчения до 0,97—0,98, среднюю плотность на 1,2—3,08%;
- 5-10% молотой до удельной поверхности $500~\text{м}^2/\text{к}$ г глины повышает прочность при сжатии на 14,3-31,7%, коэффициент размягчения с 0,92 до 0,94, снижает водопоглощение с 1 до 0,8%, а среднюю плотность на 1,06%;
- 5—15% молотой до удельной поверхности $800 \text{ м}^2/\text{кг}$ глины повышает прочность при сжатии на 10.9—47,8%, водопоглощение с 1 до 1.6—2,5%, среднюю плотность на 0.48%; при содержании добавки до 10% коэффициент размягчения увеличивается с 0.92 до 0.93—0.94.
- 2. Добавка в портландцемент прокаленной при 600 °C сарай-чекурчинской глины вызывает следующие изменения свойств цементного камня:
- 5-15% молотой до удельной поверхности $250 \text{ м}^2/\text{кг}$ глины повышает прочность при сжатии на 4,9-12,5%, водопоглощение с 1 до 1,1-1,2%, коэффициент размягчения с 0,92 до 0,93-0,94; при содержании добавки 5-10% средняя плотность возрастает на 0,9-1,1%;
- 5-15% молотой до удельной поверхности $500 \text{ м}^2/\text{кг}$ глины повышает прочность при сжатии на 10,1-46,8%, водопоглощение с 1 до 1,9-2,1%, коэффициент размягчения с 0,92 до 0,94-0,95, среднюю плотность на 0,2-2%;
- 5-10% молотой до удельной поверхности $800 \text{ м}^2/\text{к}$ г глины повышает прочность при сжатии на 8,4-17,1%, водопоглощение с 1 до 2,2-3,1%, коэффициент размягчения с 0,92 до 0,94-0,95 и снижает среднюю плотность на 0,4-0,7%.
- 3. Введение в портландцемент прокаленной при 800 °C сарай-чекурчинской глины обусловливает следующие изменения свойств цементного камня:
- 5-15% молотой до удельной поверхности $250 \text{ м}^2/\text{кг}$ глины повышает прочность при сжатии на 15,4-29,3%, водопоглощение с 1 до 1,8-1,9%, коэффициент размягчения с 0,92 до 0,96, среднюю плотность на 0,9-2,2%;
- 5-20% молотой до удельной поверхности $500 \text{ м}^2/\text{кг}$ глины повышает прочность при сжатии на 13.8-64.2%, водопоглощение с 1 до 1.1-1.3%, коэффициент размягчения с 0.92 до 0.95-0.96, среднюю плотность на 0.7-3.7%;
- 5-15% молотой до удельной поверхности $800 \text{ м}^2/\text{кг}$ глины повышает прочность при сжатии на 18,8-65,1%, водопоглощение с 1 до 1,1-1,3%, среднюю плотность на 0,2-2,2%; при содержании добавки 5% коэффициент размягчения возрастает с 0,92 до 0,95.
- 4. При введении в портландцемент 5–10% метакаолина с удельной поверхностью $1200 \text{ м}^2/\text{кг}$ прочность при сжатии цементного камня увеличивается на 9.8-29.1%, водопоглощение с 1 до 1.7-1.8%, коэффициент размягчения с 0.92 до 0.925-0.96; средняя плотность повышается на 1.2% при содержании добавки 5%.
- 5. Наиболее высокие показатели прочности при сжатии цементного камня достигаются при добавке 5% как метакаолина, так и прокаленной и молотой сарай-чекурчинской глины.
- 6. К глинитам целесообразно относить продукты прокаливания глины в более широком температурном диапазоне (400–800 °C) по сравнению с общепринятым (600–800 °C).
- 7. Добавка в портландцемент 5–10% прокаленной при 400 и 800 °C и молотой до удельной поверхности 250–800 м 2 /кг, а также прокаленной при 600 °C и молотой до удельной поверхности 500 м 2 /кг сарай-чекурчинской глины способствует более значительному повышению прочности при сжатии, чем введение такого же количества метакаолина.
- 8. Введение в портландцемент прокаленной при определенной температуре и молотой до удельной поверхности 250–800 м²/кг сарай-чекурчинской глины, как правило, более существенно повышает среднюю плотность и коэффициент размягчения цементного камня, чем добавка такого же количества метакаолина.

Заключение

Добавка в портландцемент 5–10% прокаленной при определенной температуре в диапазоне $400-800\,^{\circ}$ С и молотой до удельной поверхности $250-800\,^{\circ}$ Кг полиминеральной бескаолинитовой глины определенного химического и минералогического состава в большинстве случаев приводит к более значительному повышению прочности при сжатии, средней плотности и коэффициента размягчения цементного камня, чем добавка такого же количества метакаолина.

ЛИТЕРАТУРА

- 1. Ramachandran V. S. Concrete Admixtures Handbook: Properties, Science and Technology. 2nd ed. New York: William Andrew Publishing, 1995. 1160 p.
- 2. Рахимов Р. З., Рахимова Н. Р. Строительство и минеральные вяжущие прошлого, настоящего и будущего // Строительные материалы. -2013. -№ 1. C. 124-128.
- 3. Scrivener K. L., Nonat A. Hydration of cementitious materials, present and future // Cement and Concrete Research. $-2011. N_2 41. P. 651-665$.
- 4. Гувалов А. А., Кузнецова Т. В. Влияние вулканического пепла Джейранчельского месторождения на свойства композиционных вяжущих // Техника и технология силикатов. 2013. Т. 20, № 3. С. 2–6.
- 5. Волженский А. В., Буров Ю. С., Колокольников В. С. Минеральные вяжущие вещества: технология и свойства. М.: Стройиздат, 1979. 476 с.
- 6. Рахимов Р. 3., Халиуллин М. И., Гайфуллин А. Р. Состав и пуццолановые свойства керамзитовой пыли // Academia. Архитектура и строительство. -2013. -№ 4. C. 112–116.
- 7. Глинит-цемент: сборник статей ВНИЦ / под ред. В. И. Аксенова. Вып. 11.- М.: Главная редакция строительной литературы, 1935.-171 с.
- 8. Wild S., Khatib J. M. Portlandite consumption in metakaolin cement pastes and mortars // Cement and Concrete Research. $-1997. N_{2} 27. P. 137-146.$
- 9. Badogiannis E., Kakali G., Tsivilis S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion // Journal of Thermal Analysis and Calorimetry. − 2005. − Vol. 81, № 2. − P. 457–462.
- 10. Брыков А. С. Метакаолин // Цемент и его применение. 2012. № 7–8. С. 36–41.
- 11. Rashad A. M. Metakaolin as cementitious material: history, scours, production and composition a comprehensive overview // Construction and Building Materials. 2013. Vol. 41. P. 303–318.
- 12. Concrete Construction Engineering Handbook / ed. by E. G. Nawy. CRC Press, 2008. 1586 p.
- 13. Advanced Concrete Technology. Constituent Materials / ed. by I. Newman, B. S. Choo. Elsevier, 2003. 280 p.
- 14. Kaolinitic calcined clays Portland cement system: Hydration and properties / A. Tironi, C. C. Castellano, V. L. Bonavetti [et al.] // Construction and Building Materials. 2014. Vol. 64. P. 215–221.
- 15. Термическая активация каолинитовых глин / А. Тирони, М. Тресса, А. Сиан [и др.] // Цемент и его применение. $-2012.- \cancel{N} 26.- C.145-148.$
- 16. Clay content of argillities: influence on cement based mortars / G. Habert, N. Choupay, G. Escadeillas [et al.] // Applied Clay Science. 2009. Vol. 43, № 3–4. P. 322–330.

REFERENCES

- 1. Ramachandran V. S. *Concrete Admixtures Handbook: Properties, Science and Technology,* 2nd ed. New York: William Andrew Publishing, 1995, 1160 p.
- 2. Rakhimov R. Z., Rakhimova N. R. Construction and mineral binders past, present and future. *Stroitel'nye materialy*, 2013, no. 1, pp. 124–128 (in Russian).
- 3. Scrivener K. L., Nonat A. Hydration of cementitious materials, present and future. *Cement and Concrete Research*, 2011, no. 41, pp. 651–665.
- 4. Guvalov A. A., Kouznetsova T. V. Impact of volcanic ash Jeyranchol deposits on properties of composite binding. *Tekhnika i tekhnologiya silikatov*, 2013, vol. 20, no. 3, pp. 2–6 (in Russian).
- 5. Volzhenskiy A. V., Burov Yu. S., Kolokol'nikov V. S. *Mineral'nye vyazhushchie veshchestva: technologiya i svoystva* [Mineral binders: technology and properties]. Moscow: Stroyizdat, 1979, 476 p (in Russian).
- 6. Rakhimov R. Z., Khaliullin M. I., Gayfullin A. R. The composition and pozzolanic properties of haydite dust. *Academia. Arkhitektura i stroitel'stvo*, 2013, no. 4, pp. 112–116 (in Russian).
- 7. Glinit-tsement [Glinit-cement]. Ed by V. I. Aksenov. Is. 11. Moscow: Glavnaya redaktsiya stroitel'noy literatury, 1935, 171 p (in Russian).
- 8. Wild S., Khatib J. M. Portlandite consumption in metakaolin cement pastes and mortars. *Cement and Concrete Research*, 1997, no. 27, pp. 137–146.

- 9. Badogiannis E., Kakali G., Tsivilis S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. *Journal of Thermal Analysis and Calorimetry*, 2005, vol. 81, no. 2, pp. 457–462.
- 10. Brykov A. S. Metakaolin. *Tsement i ego primenenie*, 2012, no. 7–8, pp. 36–41 (in Russian).
- 11. Rashad A. M. Metakaolin as cementitious material: history, scours, production and composition a comprehensive overview. *Construction and Building Materials*, 2013, vol. 41, pp. 303–318.
- 12. Concrete Construction Engineering Handbook / ed. by E. G. Nawy. CRC Press, 2008, 1586 p.
- 13. Advanced Concrete Technology. Constituent Materials / ed. by I. Newman, B. S. Choo. Elsevier, 2003, 280 p.
- 14. Tironi A., Castellano C. C., Bonavetti V. L., et al. Kaolinitic calcined clays Portland cement system: Hydration and properties. *Construction and Building Materials*, 2014, vol. 64, pp. 215–221.
- 15. Tironi A., Tressa M., Sian A., et al. Thermal activation of kaolinitic clays. *Tsement i ego primenenie*, 2012, no. 6, pp. 145–148 (in Russian).
- 16. Habert G., Choupay N., Escadeillas G., et al. Clay content of argillities: influence on cement based mortars. *Applied Clay Science*, 2009, vol. 43, no. 3–4, pp. 322–330.

УЛУЧШЕНИЕ ТЕХНОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК БЕСЩЕЛОЧНОГО АЛЮМОБОРОСИЛИКАТНОГО СТЕКЛА Е НА ОСНОВЕ ФОСФАТНОГО ЛЕГИРОВАНИЯ

С. В. Мулеванов, БГТУ им. В. Г. Шухова, г. Белгород

Ключевые слова: алюмоборосиликатное стекло, малые добавки, оксид фосфора, фтор, апатитовый концентрат, отходы обогащения фосфоритов, осветление, кристаллизация, циклограмма **Key words:** aluminoborosilicate glass, small additives, phosphorus oxide, fluorine, apatite, phosphate tailings, clarification, crystallization, cyclogram

Бесщелочное алюмоборосиликатное стекло Е служит основой для получения различных изделий свето- и электротехники, а также непрерывного и штапельного стекловолокна. При производстве стекла типа Е возникают технологические проблемы, связанные с необходимостью поддержания высокой температуры варки и повышенной склонностью к кристаллизации стеклообразующего расплава. Для интенсификации процессов варки и осветления используют малые добавки, существенно не изменяющие состав стекла (соединения сурьмы, мышьяка, фториды). Эти добавки отличаются высокой ценой и токсичностью. Представляет интерес изучение возможности фосфатного легирования, т. е. введения малых добавок оксида фосфора с целью снижения температуры варки и уменьшения склонности к кристаллизации. Такие попытки уже предпринимались [1], однако они не получили дальнейшего развития.

Ранее нами была выполнена работа по определению оптимальной концентрации добавок оксида фосфора в тарные стекла и выбору наиболее эффективного фосфатного сырья [2]. Таким сырьем были апатитовый концентрат Ковдорского ГОКа (Мурманская обл.) и отходы обогащения фосфоритов Егорьевского месторождения (Московская обл., ЗАО «Кварцит»). Необходимое условие использования отходов в производстве – проведение мероприятий по их усреднению, а также по текущему контролю химического и гранулометрического состава и влажности.

Для изучения влияния оксида фосфора на технологические свойства бесщелочного алюмоборосиликатного стекла была разработана экспериментальная серия составов E с переменным содержанием P_2O_5 , вводимого за счет SiO_2 (см. таблицу). В качестве базовой основы использовали промышленный состав штапельного стекловолокна (состав E-1), а также этот же состав с добавкой ускорителя – фтора (состав E-2). Оксид фосфора вводили с апатитовым концентратом OAO «Ковдорский FOK» (основной компонент – ортофосфат кальция $Ca_3(PO_4)_2$, содержание P_2O_5 39,02%) и фосфоритными отходами ЗАО «Кварцит» (содержание P_2O_5 7,88%), а фтор – с кремнефтористым натрием Na_2SiF_6 .

Основная технологическая проблема при варке промышленного состава штапельного стекловолокна E-1 — затруднение протекания процессов силикатообразования и осветления. При этом отмечается неоднородность стекла, образуется большое количество пузырей, а также наблюдается частичная кристаллизация. Добавка фтора улучшает качество провара, однако склонность к кристаллизации сохраняется (состав E-2). Образец E-3, содержащий