СИЛИКАТНЫЙ МОДУЛЬ КАК СТРУКТУРООПРЕДЕЛЯЮЩИЙ КРИТЕРИЙ

Е.Ф. Медведев, Российский федеральный ядерный центр – Всероссийский научно-исследовательский институт экспериментальной физики, Нижегородская обл., г. Саров; Р.Г. Мелконян, Национальный исследовательский технологический университет «МИСиС», г. Москва

Ключевые слова: стекло, структура, силикатный модуль, фактор связности структуры, стандартный изобарно-изотермический потенциал, энергия единичной связи *Key words*: glass, structure, silicate modulus, factor of structure connection, standard isobaric-isothermic potential, unit bond energy

В настоящей работе доказывается целесообразность применения силикатного модуля во взаимосвязи с фактором связности структуры и стандартным изобарно-изотермическим потенциалом (СИИП) в качестве критерия, определяющего структуру стекол, относящихся к системе Na₂O–SiO₂.

В материалах совещаний по стеклообразному состоянию и трудах международных конгрессов по стеклу нет четкого определения силикатного модуля. Для его обозначения применяют символ *M*, но им же обозначают и молярную массу, поэтому в настоящей работе для силикатного модуля использован символ *n*_{Si}. Силикатным модулем (модулем *n*_{Si}) определяется отношение содержаний оксидов SiO₂ и Na₂O [1], составляющих основу многих стекол независимо от способа их получения (твердо- или жидкофазного). Однако в литературе отсутствует анализ смысловой составляющей определения модуля и не рассмотрена его связь с другими критериями стеклообразного состояния.

Стеклообразное состояние вещества уникально тем, что соотношение меры упорядоченности (кристалличности) и аморфности его структуры изменяется в широких пределах; именно это определяет ее размерность. Для прогнозирования размерности, на наш взгляд, наиболее подходит фактор связности структуры У (фактор У) в интерпретации Н. Н. Ермоленко [2]. Фактор У несложно рассчитать, если известно содержание всех компонентов:

$$Y = \frac{\sum_{j} x_{j}C_{j}Z_{j} - \sum_{k} x_{k}C_{k}Z_{k}}{\sum_{j} x_{j}C_{j}},$$
(1)

где *Z* – валентность, или координационное число (по определению Н. Н. Ермоленко; авторы настоящей работы под *Z* подразумевают валентность); $x_{k(j)}$ – число атомов металла в молекуле оксида; *j*, *k* – оксиды, содержащие катионы с валентностью соответственно *Z* > 1 и *Z* = 1; *C* – содержание оксида, мол. %.

Знак «–» в числителе означает, что щелочные оксиды разупорядочивают структуру стекол. Равенство Y = 4 указывает на образование трехмерной сетки, Y = 3 – двухмерной слоистой, Y = 2 – одномерной цепочечной структуры, при Y < 2 стекло не образуется; в работе [2] приведены соответствующие структурные мотивы.

Тенденция достижения системой в стандартных условиях (при температуре 298 К и давлении 1 атм, или $1,01 \cdot 10^5$ Па) наиболее вероятного состояния характеризуется СИИП ΔG_{298}^0 .

Для анализа использовали данные о модуле n_{Si} , факторе Y и СИИП почти 100 стекол, содержавших стеклообразователи *Gf*, модификаторы *Mod* и промежуточные компоненты *Int* в следующих количествах (в мол. %): C_{Gf} 56,46–92,28, C_{Mod} 4,34–42,96, C_{Int} 0,12–18,60. Результаты расчета модуля n_{Si} и фактора Y приведены в табл. 1. В 66 из 97 исследованных составов одновременно содержались Na₂O и K₂O; в восьми случаях $C_{K_{2O}} > C_{Na_{2O}}$, при этом всегда $C_{B_{2O_3}} < C_{SiO_2}$, т. е. сетку формировали SiO₂ и Na₂O. Тем не менее следует отметить, что все компоненты одного и того же состава взаимодействуют между собой, и любой из них влияет на структуру стекла. На рис. 1 представлены кривые Y = $f(n_{Si})$ для каждой подгруппы и объединенной группы стекол. Во всех случаях с ростом модуля происходил экспоненци-

альный рост фактора Y; для объединенной группы регрессия Y на n_{Si} аппроксимирована экспонентой первой степени (2) [3]:

$$Y = 3,45 - 1,63 \exp\left(-\frac{n_{\rm Si}}{q}\right),\tag{2}$$

где *q* – постоянный коэффициент; *q* = 2,35.

Таблица 1

Силикатный модуль и фактор связности структуры стеклообразующих составов

<i>n</i> _{Si}	Y	n _{Si}	Y	n _{Si}	Y	n _{Si}	Y				
Силикатные составы											
2,71	2,87	5,23	3,13	5,39	3,29	106,53	3,98				
5,17	3,10	5,25	3,29	17,92	3,45						
Боросиликатные составы											
1,53	2,44	3,22	3,07	2,88	3,19	15,14	3,39				
1,79	2,52	3,08	3,13	2,56	3,18	5,59	3,38				
1,82	2,64	2,99	3,13	3,67	3,23	7,13	3,53				
9,48	3,12	3,07	3,14	3,55	3,25	3,26	3,54				
2,88	3,04	3,34	3,08	2,91	3,21	29,15	3,56				
2,84	2,99	3,06	3,17	58,78	3,42	12,47	3,46				
2,85	3,00	3,35	3,18	3,39	3,27	67,74	3,60				
2,56	2,99	3,24	3,19	12,07	3,32	94,63	3,90				
5,82	3,18	3,35	3,21	23,61	3,40						
Алюмосиликатные составы											
4,08	3,02	4,65	3,27	4,94	3,21	5,23	3,28				
4,22	3,16	4,69	3,25	4,94	3,23	5,38	3,27				
4,31	3,28	4,82	3,22	4,94	3,26	5,62	3,30				
4,34	3,30	4,85	3,34	5,16	3,28	6,52	3,33				
4,58	3,18	4,88	3,27	5,17	3,26	11,22	3,43				
		Алк	омоборосили	катные состае	3Ы						
1,52	2,44	5,31	3,33	11,62	3,42	16,45	3,59				
2,80	2,95	6,35	3,28	11,71	3,53	17,27	3,59				
3,00	2,98	6,43	3,32	12,28	3,36	17,44	3,57				
3,09	3,08	7,39	3,46	13,09	3,37	18,60	3,50				
3,55	3,10	7,52	3,27	13,77	3,42	19,53	3,59				
4,00	3,12	7,63	3,25	14,47	3,39	20,98	3,59				
4,30	3,12	7,89	3,36	15,78	3,49	22,14	3,60				
4,97	3,26	9,77	3,40	16,10	3,42	22,17	3,61				
5,00	3,24	11,32	3,40	16,40	3,36						

a)

Рис. 1. Изменение фактора связности структуры и силикатного модуля: а – стекол: 1 – силикатных; 2 – боросиликатных; 3 – алюмоборосиликатных; 4 – алюмосиликатных; б – объединенной группы стекол

Задавая модуль *n*_{Si} кратно коэффициенту *q*, рассчитали фактор связности структуры У по модельному уравнению (2):

n _{si}	Y
0,25 <i>q</i>	2,21
0,5 <i>q</i>	2,49
0,75 <i>q</i>	2,71
<i>q</i>	2,88
1,25 <i>q</i>	3,00
1,5 <i>q</i>	3,12
2q	3,26
3q	3,40
4,25 <i>q</i>	3,46
12,5 <i>q</i>	3,48
15 <i>q</i>	3,48
20 <i>q</i>	3,48

Кривая Y = $f(n_{Si})$ показана на рис. 2. Модулям n_{Si} из интервала 0,5 (2Na₂O·SiO₂), 0,67 (3Na₂O·2SiO₂), 1 (Na₂O·SiO₂), 2 (Na₂O·2SiO₂), 3 (Na₂O·3SiO₂), 4, ..., 99,99 соответствовали Y 0, 1,01, 2, 3, 3,33, 3,5, ..., 3,98 (рис. 2, а). Для стекол системы Na₂O–SiO₂ в зависимости от модуля n_{Si} фактор Y асимптотически приближался к $-\infty$ снизу и к четырем сверху; при $n_{Si} \rightarrow 0$ и $n_{Si} \rightarrow +\infty$ система вырождалась в две однокомпонентные: $C_{Na_2O} = 100\%$ и $C_{SiO_2} = 100\%$. Горизонталями Y = 2 рис. 2, а, б разделены на области, где стеклообразование вероятно (над горизонталью) и невозможно (под нею; основные фазы орто- 2Na₂O·SiO₂ и пиросиликат 3Na₂O·2SiO₂, Y = 0–1); для образования структуры стекол системы Na₂O–SiO₂ предпочтительны фазы, обогащенные SiO₂.

Рис. 2. Изменение фактора связности структуры стекол системы Na_2O-SiO_2 : а – для любого соотношения Na_2O и SiO_2 ; б – для большинства промсоставов

Итак, $n_{\rm Si} = 0,5$ – нижний предел изменения модуля. Содержание Na₂O может быть сколь угодно малым, а SiO₂ – большим. Если $C_{\rm SiO_2}$ 99, 99,9, 99,99 и 99,9999 мол. %, а $C_{\rm Na_2O}$ 1, 0,1, 0,01 и 0,0001 мол. %, то $n_{\rm Si}$ равен 99, 999, 9999 и 999999, Ig $n_{\rm Si}$ 2, 3, 4 и 6. При Ig $n_{\rm Si} \ge 2$ стекло практически кварцевое и не относится к системе Na₂O–SiO₂, т. е. Ig $n_{\rm Si} = 2$ – верхний предел изменения модуля. Для промсоставов $n_{\rm Si} = 1-5$ (см. рис. 2, б). Для стеклообразования неблагоприятно, если основная фаза – ортосиликат [(SiO_{4/2})⁴⁻4Na⁺], поскольку нет мостиковых кислородов для построения сетки. Они появляются, начиная с пиросиликата ($n_{\rm Si} = 0,67$) при образовании двухчленных цепочек из [(SiO_{4/2})⁴⁻3Na⁺]⁻. В обоих случаях Y = 0-1,01, $n_{\rm Si} = 0,5-0,67$. На рис. 2 цифрами обозначены значения фактора Y основных силикатных фаз и 100% SiO₂. Образованию стекла способствуют моно- и дисиликат; фазы, обогащенные SiO₂ и имеющие 2–3 мостиковых кислорода – [(SiO_{4/2})⁴⁻2Na⁺]²⁻ и [(SiO_{4/2})⁴⁻Na⁺]³⁻. Эти фазы формируют двух- и трехмерные сетки ($Y \ge 2$). Отсюда вытекают условия стеклообразования по силикатному модулю и фактору связности структуры (3):

$$0 \le \lg n_{Si} < 2$$
 или $1 \le n_{Si} < 100$, при этом $2 \le Y < 4$. (3)

На рис. 2 приведена номограмма для определения по заданному модулю *n*_{Si} фактора У и соответствующего структурообразующего мотива (с учетом справочных данных [2]), и, наоборот, по заданному У можно определить n_{Si} . По кривой $Y = f(n_{Si})$ легко найти один из критериев, если второй известен.

Если для стекла, состоящего из SiO₂ и Na₂O, разделить числитель и знаменатель в формуле (1) на $x_{\text{Na}}C_{\text{Na}_2\text{O}}$ и принять $x_{\text{Si}}/x_{\text{Na}}$ за x, с учетом Z_{Si} = 4 выражение (1) можно представить в следующем виде (4):

$$Y = \frac{4xn_{\rm Si} - 1}{xn_{\rm Si}} \,. \tag{4}$$

Кроме указанных в составы могут входить другие стеклообразователи и модификаторы, а также промежуточные компоненты. Тогда, обозначив $C_{Gf}/C_{Na_2O} = n_{Gf}$, $C_{Int}/C_{Na_2O} = n_{Int}$, $C_{Mod}/C_{Na_2O} = n_{Mod}$, $x_{Gf}/x_{Na} = x'$, $x_{Int}/x_{Na} = x''$, $x_{Mod}/x_{Na} = x'''$, формулу Н. Н. Ермоленко (1) можно преобразовать следующим образом:

$$Y = \frac{4xn_{Si} + x'n_{Gf}Z_{Gf} + x''n_{Int}Z_{Int} - x'''n_{Mod} - 1}{xn_{Si} + x'n_{Gf} + x''n_{Int}}.$$
(5)

Полученный вариант формулы Н. Н. Ермоленко доказывает зависимость фактора связности структуры У от силикатного модуля *n*_{Si} стекол, относящихся к системе Na₂O–SiO₂.

Рассмотрим вопрос о применении зависимости $Y = f(n_{Si})$ для определения объема фаз, образующихся в растворе, и свободного объема их структуры. В этом случае справедливо термодинамическое уравнение (6):

$$G_{pB} = T_{pB}S_{pB} - p_{pB}V_{pB} + \mu_{pB}n_{pB} + \mu_{B}n_{B}, \qquad (6)$$

где *G* – энергия Гиббса; *T* – температура; *S* – энтропия; *p* – давление; *V* – объем; µ – химический потенциал; *n* – количество частиц; нижние индексы: pв – исходные растворенные вещества; в – вода.

В ходе взаимодействия компонентов в растворе образуются новые фазы (нижний индекс ф), тогда получаем:

$$G_{\phi} = T_{\phi}S_{\phi} - p_{\phi}V_{\phi} + \mu_{\phi}n_{\phi} + \mu_{B}n_{B}.$$

$$\tag{7}$$

После испарения воды $n_{\rm B} = 0$, хотя она может находиться в адсорбированной форме во внешней координационной сфере новых фаз, в виде кристаллизационной воды и в форме ОН-групп. Величину $V_{\rm p}$ составляют объемы собственно частиц $V_{\rm q}$ новых фаз и свободный объем $V_{\rm CB}$ между ними:

$$V_{\rm th} = V_{\rm H} \pm V_{\rm CB}. \tag{8}$$

В выражении (8) знак «±» означает, что при образовании новых фаз свободный объем может уменьшаться, т. е. структура вещества уплотняется, или может увеличиваться, и в этом случае структура разрыхляется. Тогда

$$G_{\phi} = T_{\phi}S_{\phi} - p_{\phi}(V_{\mathsf{y}} \pm V_{\mathsf{cB}}) + \mu_{\phi}n_{\phi}$$
или
$$G_{\phi} = T_{\phi}S_{\phi} - p_{\phi}V_{\mathsf{y}} \pm p_{\phi}V_{\mathsf{cB}} + \mu_{\phi}n_{\phi}.$$
 (9)

Из (9) следует, что $G_{\phi} = f(V_{c_B})$, при этом $V_{c_B} = V_{\phi} - V_{u}$. Рассмотрим усредненную абстрактную частицу объемом V_0 . При количестве таких частиц N_0

$$V_{\rm H} = N_0 V_0.$$

Вновь образующиеся фазы имеют собственную структуру, так как состоят из определенным образом упакованных материальных частиц, и из этих фаз формируются фрагменты структуры стекла:

$$V_{\rm th} = N_0 V_0 Y. \tag{10}$$

Отсюда после вычитания (9) из (10) получается выражение (11):

$$V_{\rm CB} = N_0 V_0 (Y - 1)$$
 или $V_{\rm CB} = f(Y).$ (11)

Если Y = $f(n_{Si})$, то $V_{CB} = f(n_{Si})$. Иными словами, свободный объем V_{CB} как неотъемлемое свойство структуры зависит от модуля n_{Si} , т. е. модуль – это критерий, определяющий структуру.

Определим энергию, приходящуюся на один атом, с учетом числа атомов *m* в составе известных фаз *i* в системе Na₂O–SiO₂, оксидов Na₂O и SiO₂, а также данных о СИИП ΔG_{298}^{0} [4] (табл. 2, рис. 3, а):

$$\varepsilon_i = \frac{\Delta G_{298,i}^0}{m_i} \,. \tag{12}$$

5

Таблица 2

Фаза	n _{Si, i}	m_i	$-\Delta G^0_{298,i}$, ккал/моль		ε _i , ккал/моль		Y_i	
			[4]	(15)	(12)	(14)	(1)	(13)
Na ₂ O	Нет	3	90	106,2	30	35,4	Нет	-1
2Na ₂ O·SiO ₂	0,5	9	476,05	494,1	52,9	54,9	0	0,2
$3Na_2O \cdot 2SiO_2$	0,67	15	Нет	864	Нет	57,6	1	0,8
Na ₂ O·SiO ₂	1	6	351,26	375	58,5	62,5	2	2
$2Na_2O \cdot 3SiO_2$	1,5	15	Нет	933	Нет	62,2	2,7	2,6
$Na_2O \cdot 2SiO_2$	2	9	559,35	564,3	62,2	62,7	3	3,1
Na ₂ O·3SiO ₂	3	12	766,05	754,8	63,8	62,9	3,3	3,2
SiO ₂	Нет	3	203	189	67,7	63	4	3,2

Параметры фаз системы Na₂O-SiO₂

Примечание. Параметры фаз *i* рассчитаны по справочным данным (квадратные скобки) и модельным уравнениям (круглые скобки).

б)

в)

Рис. 3. Параметры силикатов системы Na₂O–SiO₂:
a – Y_i =
$$f(n_{Si, i})$$
 и $\varepsilon_i = f(n_{Si, i})$; б – $\Delta G^0_{298, i} = f(m_i)$;
расчет по составу (рс) и по модели (15) (рм);
в – верификация модели (15)
зависимостью $\Delta G^0_{298, i} = f(n_{Si, i})$

На рис. 3, а приведены кривые зависимостей $Y_i = f(n_{Si, i})$ и $\varepsilon_i = f(n_{Si, i})$, аппроксимированные по Больцману:

$$Y_{i} = -\frac{4.6}{1 + \exp\left(\frac{n_{\text{Si},i} - 0.7}{0.3}\right)} + 3.2;$$
(13)

$$\varepsilon_{i} = -\frac{937,4}{1 + \exp\left(\frac{n_{\text{S}i,i} + 1,4}{0,4}\right)} + 62,9.$$
(14)

Результаты, полученные по уравнениям (13) и (14), сравнили с результатами, полученными с учетом справочных данных. Казалось бы, зависимость $\Delta G_{298,i}^0 = f(m_i)$ линейная (рис. 3, б):

 $\Delta G_{298,i}^0 = -39,83 + 63,37 m_i$ (коэффициент корреляции $\rho = 0,99$). (15)

Отметим, что для поиска строгих зависимостей формула (12) не совсем корректна, так как неясно, какие именно связи следует усреднять – мостиковые связи Si–O–Si между тет-

раэдрами [SiO₄] или связи Si–O, O–O между атомами внутри тетраэдров; оборванные с нескомпенсированными зарядами типа Si–O⁻Na⁺. Более того, в работе [4] отмечалось, что энергия связей между атомами в тетраэдрах, образующих 3-, 4- и 5-, 6-членные циклы, разная: в 5-, 6-членных ($Q_{5, 6}$) кремниевокислородных структурах (кольцах) $E_{cB}O1s = 533,1$ эВ, $E_{cB}Si2p = 103,4$ эВ, а в 3-, 4-членных кольцах ($Q_{3, 4}$) $E_{cB}O1s = 532,1$ эВ, $E_{cB}Si2p = 102,2$ эВ; для атомов кислорода в составе кремниевой кислоты $H_2SiO_3 E_{cB}O1s = 534,2$ эВ.

В контексте рассматриваемой темы уместно привести цитату из [5, с. 13]: «Сложность полос инфракрасных спектров силикатов ... можно объяснить с той точки зрения, что объединение кремниевокислородных тетраэдров в кольцевые, цепочечные и другие радикалы приводит к частичному искажению SiO₄ тетраэдров и ... понижению их симметрии. Из рентгеновских данных следует, что межатомные расстояния Si–O и O–O в одном и том же тетраэдре в структурах силикатов далеко не одинаковые».

Для понимания тенденции изменения параметров стекол системы Na₂O–SiO₂ допустимо использовать уравнения (12)–(15). Проиллюстрируем это на следующем примере. По формуле (12) дополнительно рассчитали СИИП фаз $3Na_2O\cdot2SiO_2$ и $2Na_2O\cdot3SiO_2$ с n_{Si} соответственно 0,67 и 1,5 (см. табл. 2). В целом для известных силикатов кривая $\Delta G_{298,i}^0 = f(n_{Si,i})$ – парабола; на рис. 3, в показан ее фрагмент в пределах от $n_{Si} = 0$ ($C_{Na_2O} = 100\%$) до $n_{Si} = 3$ (фаза Na₂O·3SiO₂). В известных силикатах $xNa_2O\cdot ySiO_2$ с увеличением модуля n_{Si} фактор Y также растет. Результаты для n_{Si} 0,67 и 1,5 обозначены звездочками. Логично, что СИИП силикатов с разными модулями n_{Si} отличаются друг от друга: чем выше модуль (больше массовая доля стеклообразователя SiO₂ в составе фазы), тем выше СИИП – $\Delta G_{298,SiO_2}^0$ в 2,3 раза больше $\Delta G_{298,Na_2O}^0$. Однако для n_{Si} 0,67 и 1,5 и фактора связности структуры Y 1(0,8) и 2,7(2,6) результаты для $\Delta G_{298,i}^0$ 864 и 933 ккал/моль не соответствовали общей тенденции и отличались от справочных данных на 51–52%. Линейная модель (15) лишь приближенно описывает зависимость СИИП от энергии единичной связи ε_i и количества атомов в составе фаз m_i . Тип и размерность структуры силикатной фазы определяются силикатным модулем $n_{Si,i}$, поэтому СИИП $\Delta G_{298,i}^0$ зависит от нескольких переменных –

$$\Delta G_{298,i}^0 = f(\varepsilon_i, \ m_{i,} \ n_{\text{Si},i}, \ Y_i).$$

На рис. 4 представлены результаты моделирования для той области системы Na₂O–SiO₂, основные фазы которой и их параметры обычно приводятся в литературе. Поверхности трехмерных фигур, выражающие зависимость одного параметра от двух других, искривлены. Это свидетельствует об отсутствии линейной зависимости $\Delta G_{298,i}^0$ даже от энергии единичной связи и числа атомов в силикате, особенно при высоких ε_i и m_i (рис. 4, а). Зависимости $\Delta G_{298,i}^0 = f(n_{\text{Si},i}, \varepsilon_i)$ и $\Delta G_{298,i}^0 = f(Y_i, \varepsilon_i)$ по форме аналогичны (рис. 4, б, в), что подтверждает справедливость выражений (4) и (5). Кроме того, параметр ε_i также нелинейно определяется модулем $n_{\text{Si},i}$ и фактором Y_i (рис. 4, г). Следовательно, усреднять можно только те связи, которые образуют аналогичные по размерности элементы структуры.

Рис. 4. 3D-моделирование зависимости параметров системы Na₂O-SiO₂: a - $\Delta G_{298,j}^0 = f(\varepsilon_i, m_i); \, \delta - \Delta G_{298,j}^0 = f(n_{\text{Si}, i}, \varepsilon_i); \, B - \Delta G_{298,j}^0 = f(Y_i, \varepsilon_i); \, \Gamma - \varepsilon_i = f(Y_i, n_{\text{Si}, i})$

Итак, формально силикатный модуль выражает отношение концентраций оксидов SiO₂ и Na₂O, составляющих основу многих промышленных стекол. Во взаимосвязи с фактором связности структуры и СИИП силикатный модуль характеризует структурные и термодинамические изменения в стеклообразующих составах на основе натриевосиликатной системы независимо от способа синтеза – будь то твердофазная и (или) растворная технология.

С высокой долей вероятности можно утверждать, что связь энергии, приходящейся на один атом, с фактором связности структуры и силикатным модулем может быть линейной только в пределах отдельно взятой фазы с постоянными значениями этих параметров. В случае полифазного вещества зависимость намного сложнее.

ЛИТЕРАТУРА

1. Корнеев В. И., Данилов В. В. Производство и применение растворимого стекла: жидкое стекло. – Л.: Стройиздат, 1991. – 176 с.

2. Ермоленко Н. Н. Химическое строение и некоторые свойства оксидных стекол // Стеклообразное состояние: Тр. VIII Всесоюз. совещ. (Ленинград, 28–31 октября 1986 г.) / отв. ред. Е. А. Порай-Кошиц. – Л.: Наука, 1988. – С. 132–139.

3. Медведев Е. Ф. Водородная проницаемость силикатных и боросиликатных стекол: основы феноменологии, золь-гель синтез и анализ компонентов шихт. – Саров: ФГУП РФЯЦ-ВНИИЭФ, 2009. – 364 с.

4. Бабушкин В. И., Матвеев Г. М., Мчедлов-Петросян О. П. Термохимия силикатов / под ред. О. П. Мчедлова-Петросяна. – М.: Стройиздат, 1986. – 408 с.

5. Плюснина И. И. Инфракрасные спектры силикатов. – М.: Изд-во Моск. ун-та, 1967. – 192 с.

REFERENCES

1. Korneev V. I., Danilov V. V. *Proizvodstvo i primenenie rastvorimogo stekla: zhidkoe steklo* [The production and use of soluble glass: liquid glass]. Leningrad: Stroyizdat, 1991, 176 p (in Russian).

2. Ermolenko N. N. Chemical structure and some properties of oxide glasses. *Stekloobraznoe sostoyanie*: Tr. VIII Vsesoyuz. soveshch. Leningrad: Nauka, 1988, pp. 132–139 (in Russian).

3. Medvedev E. F. Vodorodnaya pronitsaemost' silikatnykh i borosilikatnykh stekol: osnovy fenomenologii, zol'-gel' sintez i analiz komponentov shikht [Hydrogen permeability of silicate and borosilicate glasses: the foundations of phenomenology, sol-gel synthesis and analysis of the components of the charge]. Sarov: FGUP RFYaTs-VNIIEF, 2009, 364 p (in Russian).

4. Babushkin V. I., Matveev G. M., Mchedlov-Petrosyan O. P. *Termokhimiya silikatov* [Thermochemistry of silicates]. Moscow: Stroyizdat, 1986, 408 p (in Russian).

5. Plyusnina I. I. *Infrakrasnye spektry silikatov* [Infrared spectra of silicates]. Moscow: Izd-vo Mosk. un-ta, 1967, 192 p (in Russian).