МЕЖАТОМНЫЕ ВЗАИМОДЕЙСТВИЯ В БИНАРНЫХ СОЕДИНЕНИЯХ КАЛЬЦИЯ Молчан Н.В., Кривобородов Ю.Р., Фертиков В.И.

Химические взаимодействия и фазовые превращения традиционно характеризуются термодинамическими показателями и диаграммами состояний. Превращения веществ сопровождаются тепловыми эффектами и изменениями объема. Плотность, важная характеристика веществ, является результатом двух показателей: 1) массы, которая сосредоточена в ядрах атомов и 2) объема, который формируется электронными оболочками.

Химические процессы — это реакции, протекающие с образованием новых соединений. Акт химического взаимодействия состоит в образовании новых электронных (молекулярных) орбиталей. Химическая связь между атомами обусловливается перекрыванием электронных облаков. Превращения веществ и образование новой структуры определяется взаимодействием электронных оболочек атомов и молекул. Тепловые процессы достаточно подробно рассмотрены в многочисленных работах по химической термодинамике, а информации по изменениям объемов недостаточно.

Ключевые слова: концентрация электронов, плотность, структура.

В работах [1–9] представлена нормированная величина изменения объема при химических реакциях (коэффициент уплотнения), которая коррелирует с термодинамическими характеристиками. Объем формируется электронами, вводится величина «концентрация электронов», которая может применяться в качестве структурной характеристики вещества.

Целью настоящей работы было выявить возможность использования нормированной величины изменения объема как характеристики, позволяющей оценивать интенсивность взаимодействия между разнородными атомами, а концентрацию электронов и концентрацию ядер атомов, определяемых в единицах моль/см³, в качестве величины, позволяющей оценить структуру материала.

Методы.

В работах [1-9] представлена формула для определения концентрации электронов элементных веществ на основании справочных данных [10, 11] по их плотности в конденсированном состоянии:

$$C_{\text{электр}} = \frac{d}{M}Z \tag{1}$$

где $C_{\mathit{электир}}$ — концентрация электронов в единице объема, моль/см³; d — плотность вещества в конденсированном состоянии, г/см³; M — молярная масса, г/моль; Z — порядковый номер элемента в таблице Менделеева.

Соединение типа A_aB_b имеет концентрацию электронов

$$C_{\text{электр}} \approx \frac{a * Z_A + a * Z_B}{M/d}$$
 (2)

где a - подстрочный индекс элемента A , Z_A - порядковый номер элемента A, b - подстрочный индекс элемента B, Z_B - порядковый номер элемента B.

Соединение типа $A_a B_b$ имеет концентрацию ядер атомов (независимо от их сорта)

$$C_{\text{soep}} = \frac{a+b}{M/d} \tag{3}$$

Сплавы металлов не являются простой смесью различных компонентов, а представляют собой различные химические соединения из элементов, которые образуют сплав.

Для оценки глубины взаимодействия между атомами удобно сравнивать объемы веществ до реакции ($V_{компон.}$) и объемы веществ после реакции ($V_{прод.}$). Полученную величину нормируем к объему конечного продукта. Результат, выраженный в процентах, характеризует изменение объемов веществ в процессе реакции. Обозначим эту величину — коэффициент уплотнения ($K_{упл.}$):

$$K_{yn.n.} = \left(\frac{\Sigma V_{\kappa om non.} - V_{npool.}}{V_{npool.}}\right) \times 100\%$$
(4)

Коэффициент уплотнения может быть. положительным, так и отрицательным. Это означает, что продукт реакции может иметь объем меньший, чем сумма объемов исходных элементов, а может быть больше суммы исходных объемов (разрыхление электронных оболочек). Кальций в твердом состоянии имеет объем одного моля атомов 25,86 cm³, концентрацию электронов 0,773 моль/ cm^3 , концентрацию ядер 0,039 моль/см³.

В таблице 1 приведены характеристики бинарных соединений кальция. Столбцы 2, 3 и 4 заполнены на основании расчетов по формулам 4, 2 и 3 используя данные из [10,11]. Столбец 5 заполнен данными из [12].

Рассматривая межатомные взаимодействия, необходимо отметить, что в различных сочетаниях объемы взаимодействующих атомов меняются различно.

Таблица 1 – Структурные характеристики бинарных соединений кальция

Вещество	Коэффи-	Концен-	Концен-	-∆H ^o 298
	циент	трация	трация	
	уплот-	электро-	ядер	
	нения,%	нов	моль/см 3	
		моль/см ³		
1	2	3	0.127	5
CaH ₂ CaLi ₂	145,2 2,13	1,003 0,499	0,137 0,058	175
Be ₁₃ Ca	9,70	0,499	0,038	
CaB ₆	21,78	1,109	0,170	
CaC ₂	30,27	1,100	0,103	62
CaC_2 Ca_3N_2	78,29	1,308	0,103	02
	48,34	1,085	0,088	432
Ca ₂ N				659
CaO	100,9	1,680	0,120	
CaF ₂	90,70	1,557	0,123	1228
CaMg ₂	7,11	0,855	0,058	
Al ₂ Ca	19,9	1,169	0,076	
Al ₄ Ca	5,81	1,134	0,079	
CaSi ₂	34,1	1,277	0,080	
Ca ₂ Si	31,1	1,072	0,060	
CaSi	33,0	1,166	0,069	
CaP ₃	39,93	1,345	0,083	
CaP	40,2	1,206	0,070	
Ca ₃ P ₂	7,8	0,894	0,050	494
CaS	54,6	1,301	0,072	482
CaCl ₂	23,4	1,070	0,059	794
CaNi ₅	19,6	3,178	0,119	
Ca ₂ Ni ₇	27,9	3,001	0,114	
CaNi ₃	32,0	2,922	0,112	
Ca ₂ Ni ₅	28,4	2,645	0,103	
CaCu	16,9	1,669	0,068	
CaCu ₅	14,0	2,995	0,109	
Ca ₃ Zn	7,5	1,067	0,047	
CaZn	11,4	1,532	0,061	
CaZn ₃	14,6	2,305	0,084	
CaZn ₂	17,1	2,058	0,077	
CaZn ₅	12,4	2,617	0,092	
Ca ₃ Ga ₈	21,1	2,118	0,076	
CaGa ₄	24,0	2,397	0,083	

Продолжение таблицы 1.

продолжение таблицы т.							
1	2	3	4	5			
CaGe ₂	30,4	2,011	0,072				
CaGe	36,6	1,740	0,070				
CaAs	26,7	1,668	0,063				
CaAs ₃	20,1	2,152	0,072				
Ca_2As_3	30,8	1,939	0,070				
Ca ₅ As ₃	40,0	1,591	0,064				
CaSe	39,9	1,731	0,064	364			
CaBr ₂	23,0	1,522	0,051	674			
CaRh ₂	36,5	3,429	0,094				
CaPd ₅	22,4	4,284	0,103				
CaPd	37,8	2,524	0,076				
CaPd ₂	32,4	3,304	0,078				
$CaAg_2$	14,6	2,738	0,072				
Ag ₈ Ca ₃	15,2	3,068	0,077				
Ca ₃ Cd ₂	13,4	1,644	0,053				
Cd ₂ Ca	17,7	2,566	0,066				
In ₂ Ca	21,7	2,450	0,062				
CaSn ₃	13,5	2,647	0,062				
Ca ₂ Sn	20,2	1,154	0,052				
CaSn	15,4	1,905	0,054				
Ca ₅ Sb ₃	27,1	1,687	0,053				
CaSb ₂	22,3	2,345	0,058				
Ca ₂ Sb	32,3	1,658	0,055				
CaTe	23,5	1,868	0,052	293			
CaI ₂	7,2	1,719	0,041	538			
CaIr ₂	37,1	5,382	0,093				
Ca ₅ Sb ₃	27,1	1,687	0,053				
CaSb ₂	22,3	2,345	0,058				
Ca ₂ Sb	32,3	1,658	0,055				
CaTe	23,5	1,868	0,052	293			
CaI ₂	7,2	1,719	0,032	538			
			·	336			
CaIr ₂	37,1	5,382	0,093				
CaPt ₂	36,4	5,290	0,090				
AuCa	24,7	3,300	0,067				
Au ₂ Ca ₅ AuCa ₃	17,7 20,9	1,047 1,831	0,053 0,053				
Auca ₃ Au ₅ Ca	11,8	5,929	0,033				
Ca ₅ Hg ₃	24,0	2,337	0,055				
Ca ₃ Hg	34,4	1,952	0,056				
CaHg ₁₁	7,0	5,068	0,068				
CaTl ₃	18,2	3,939	0,060				
CaTl	21.3	2,756	0,055				
Ca ₅ Pb ₃	25.3	2,273	0,053				
CaPb	25.3	2,880	0,056				
CaPb ₃	15.6	3,752	0,056				
Ca ₂ Pb	21,5	2,040	0,050				
Ca ₅ Bi ₃	23,8	2.236	0.051				
CaPo	19,2	2.499	0.048				

В работах [1-6] устанавливалась корреляция между коэффициентом уплотнения и термодинамическими характеристиками. Устанавливаемые корреляции указывали на закономерности химических превращений.

Чем выше уплотнения для однотипных соединений, тем больше теплота образования для этих химических соединений.

Рассматривая ряд однотипных соединений CaF_2 , $CaCl_2$, $CaBr_2$, CaI_2 отмечаем уменьшение коэффициента уплотнения и теплоты образования. Корреляционный анализ этих данных показал зависимость теплоты образования и коэффициента уплотнения.

Коэффициент корреляции равен 0,981. Критический коэффициент корреляции для четырех пар при доверительной вероятности 0,975 равен 0,950. Таким образом доказывается взаимосвязь между теплотой образования и изменением объема.

Рассматривая другой ряд однотипных соединений CaO, CaS, CaSe, CaTe, отмечаем также уменьшение коэффициента уплотнения и теплоты образования. Коэффициент корреляции равен 0,990. Что является также доказательством взаимосвязи между теплотой образования и изменением объема. Для соединения CaPo, которое относится к этому ряду, теплота образования неизвестна. Пользуясь найденной зависимостью, определяем, что теплота образования соединения CaPo равна -190 кдж/моль.

Можно утверждать, что химическая активность фтора, хлора, брома и иода для ряда соединений CaF₂, CaCl₂, CaBr₂, CaI₂ равномерно уменьшается.

Химическая активность кислорода, серы, селена, теллура и полония в ряду соединений CaO, CaS, CaSe, CaTe, CaPo равномерно уменьшается.

На основании полученных данных можно утверждать, что изменение объема при химических реакциях надежно характеризует интенсивность межатомных взаимодействий.

Сравнение объемов веществ до реакции и после позволяет полнее раскрывать взаимодействие атомов и молекул, чем это позволяют делать тепловые эффекты.

Литература:

- 1. Молчан Н.В., Фертиков В.И. Сжимаемость веществ и размеры атомов // Материаловедение. -2011. №6, С.2-6.
- 2. Molchan N.V., Fertikov V.I. Determination of Concentration of Electrons for Description of the Structure of Materials, with Sulfides as an Example // Journal of Materials Sciences and Applications. 2015. V.1. №2. P. 38-44.
- 3. Molchan N.V., Fertikov V.I. Interrelation of Thermodynamic Parameters and Structural Characteristics, with Halides of Groups 1 and 2 Elements as an Example. 2016. American Journal of Chemistry and Application. Vol. 3, No. 5, pp. 28-32.
- 4. Молчан Н.В., Фертиков В.И. Концентрация электронов как структурная характеристика оксидов. // Техника и технология силикатов. -2016. Т.23, №2, С. 8-13.
- 5. Молчан Н. В., Кривобородов Ю.Р. Фертиков В. И. Взаимодействие воды с оксидами, образующими гидроксиды и кристаллогидраты. // Техника и технология силикатов. 2017. Т. 24, № 1. С. 11–16. 6. Molchan N., Eliseev D., Fertikov V. Control of Nickel Alloy Structural Change by the Atomic Emission Spectroscopy Method. American Journal of Analytical Chemistry, 2016, vol. 7, no. 9, pp. 633–641.
- 7. Fertikov V., Seguru G. Assessment of Changes in Volume of Nickel Compounds Interacting with the Chemical Elements. International Journal of Current Research. 2017, vol 9, Issue, 08, pp. 56361-56364.
- 8. Seguru G., Fertikov V. Interaction of Elements in Binary Compounds of Hydrogen. 2017. American Journal of Chemistry and Application. 2017. Vol.4, No. 6, Page: 59-62

Структуру кристаллического состояния удобнее рассматривать через показатели, которые могут характеризовать пространство, заполненное ядрами атомов и электронами. Ядра атомов образуют остов структуры, а электроны образуют взаимодействие между атомами.

Представленные в таблице 1 концентрации электронов и концентрации ядер атомов способны отображать различия и сходство структур веществ.

Выводы

- 1. Представлены результаты нормированной характеристики изменения объемов в бинарных соединениях кальцья.
- 2. Предложено использовать плотность, как одну из величин, способных характеризовать взаимодействие атомов в конденсированной системе для оценки свойств веществ.
- 3. Предложено использовать величины концентрации электронов и концентрации ядер атомов соединений, определяемых в единицах моль/см³, как структурные характеристики материала.
- 4. Для оценки степени взаимодействия исходных компонентов при образовании соединения предложено использовать коэффициент уплотнения.

References:

- 1. Molchan N.V., Fertikov V.I. (2011) Compressibility of Substances and Dimensions of Atoms. Material Science, 6, 2-6. (in Russian)
- 2. Molchan N.V., Fertikov V.I. Determination of Concentration of Electrons for Description of the Structure of Materials, with Sulfides as an Example // Journal of Materials Sciences and Applications. 2015. V.1. №2. P.38-44.
- 3. Molchan N.V., Fertikov V.I. Interrelation of Thermodynamic Parameters and Structural Characteristics, with Halides of Groups 1 and 2 Elements as an Example. 2016. American Journal of Chemistry and Application. Vol. 3, No. 5, pp. 28-32.
- 4. Molchan N.V., Fertikov V.I. Concentration of electrons as a structural characteristic of oxides, Technique and technology of silicates, 2016; 2: 8-13. (in Russian)
- 5 Molchan N., Krivoborodov Yu., Fertikov V. The interaction of water with oxides, forming hydroxides and crystal hydrates, Technique and technology of silicates, 2017; 1: 11-15. (in Russian)
- 6. Molchan N., Eliseev D., Fertikov V. Control of Nickel Alloy Structural Change by the Atomic Emission Spectroscopy Method. American Journal of Analytical Chemistry, 2016, vol. 7, no. 9, pp. 633–641.
- 7. Fertikov V., Seguru G. Assessment of Changes in Volume of Nickel Compounds Interacting with the Chemical Elements. International Journal of Current Research. 2017, vol 9, Issue, 08, pp. 56361-56364.
- 8. Seguru G., Fertikov V. Interaction of Elements in Binary Compounds of Hydrogen. 2017. American Journal of Chemistry and Application. 2017. Vol.4, No. 6, Page: 59-62

- 9. Молчан Н. В., Кривобородов Ю.Р. Фертиков В. И. Взаимодействие кремния с химическими элементами, образующими с ним бинарные соединения. // Техника и технология силикатов. 2017. Т. 24, № 4. С. 11—17.
- 10. International Centre for Diffraction Data. JCPDS PCPDFWIN, 2002; V. 2.03.
- 11. Новый справочник химика и технолога. Основные свойства неорганических, органических и элементорганических соединений. СПб.: НПО «Профессионал», 2007. 1276 с.
- 12. Константы неорганических веществ. Справочник / Р.А.Лидин, Л.Л.Андреева, Л.Л.Молочко; под ред. Лидина Р.А. М.: «Дрофа», 2006. 685 с.
- 9. Molchan N., Krivoborodov Yu., Fertikov V. The interaction of silicon with the chemical elements, forming with it a binary connection. Technique and technology of silicates, 2017; 4: 11-17. (in Russian)
- 10. International Centre for Diffraction Data. JCPDS PCPDFWIN, 2002; V. 2.03.
- 11. Key Properties of Inorganic, Organic and Element Organic Compounds, The New Reference Book for Chemists and Technologists, NPO "Professional", Saint-Petersburg, 2007.
- 12. Lidin R., Andreeva L. and Molochko L. 2006. Konstantineorganicheskikh veshchestv. Spravochnik [The constants of inorganic substances. Reference book], Drofa, Russia.

Молчан Н.В. кандидат фармацевтических наук, - Научный центр экспертизы средств медицинского применения, Москва; (<u>nimolchan@mail.ru</u>).

Кривобородов Ю.Р., доктор технических наук, профессор, - Российский химико - технологический университет им. Д.И. Менделеева, Москва, Россия

Фертиков В. И., кандидат биологических наук, - Всероссийский институт легких сплавов, Москва.