PROBLEMS AND PROSPECTS OF USING ALUMINATE CEMENTS FOR THE PRODUCTION OF UNFORMED REFRACTORIES
Abstract and keywords
Abstract (English):
The hydration process of zirconium-containing high-alumina cements (85-90 wt.% CA2) with additives of ZrO2 and AlOCl introduced at the clinker firing stage was studied. Based on the results of the analysis of the composition of the liquid phase and solid phases, it was established that at an early age, modified cements hydrate more slowly, and then this process accelerates and after 21 days they are ahead of the control cement VGC-70 in terms of hydration. The hydration products of zirconium-containing cement by 28 days contain metastable hydroaluminates CAH10, C2AH8, aluminum and zirconium hydroxides, whereas for the control high-alumina cement, C3AH6, C2AH8 and Al(OH)3 are more characteristic. The simultaneous presence of zirconium- and chloride-containing phases significantly reduces the rate of hydration and at the same time promotes the formation of a more uniform dense structure of cement stone.

Keywords:
high-alumina cement, calcium aluminozirconate, calcium zirconate, hydration, calcium hydroaluminates, structure of cement stone.
References

1. Kuznecova, T.V. Glinozemistyy cement / T. V. Kuzne-cova, Y. Talaber. – Moskva: Stroyizdat, 1988. – 272 s. – ISBN 5-274-00217-X. – EDN YQMMAP.

2. Krivoborodov Yu.R. Special'nye cementy: razno-vidnosti, svoystva i primenenie // Tehnika i tehnolo-giya silikatov. 2023. T. 30. № 1. S. 84-91

3. Kulieva, B. A. Fiziko-himicheskie svoystva i obla-sti primeneniya glinozemistogo cementa / B. A. Kulie-va, A. Arykov, D. Ataev // Vestnik nauki. – 2024. – T. 2, № 4(73). – S. 653-656. – EDN XYRLQR.

4. Neformovannye ogneupory: Spravochnoe izdanie: V 2-h tomah. T. I. Svoystva i primenenie neformovan-nyh ogneuporov / Pod red. I. D. Kascheeva. — 2-e izd. — M.: Teplotehnik, 2004. — 400 s.

5. Madej D., Sieroń K., Kruk A. Synthesis and performance of aluminous cements containing zirconium and strontium as alternatives to the calcium aluminate cements designed for the production of high performance refractories // Ce-ment and Concrete Composites 130(2022)104518(1-17). https://doi.org/10.1016/j.cemconcomp.2022.104518

6. Szczerba J., Madej D., Śnieżek E., Prorok R. The applica-tion of DTA and TG methods to investigate the non-crystalline hydration products of CaAl2O4 and Ca7ZrAl6O18 compounds // Thermochimica Acta 567 (2013) 40– 45. http://dx.doi.org/10.1016/j.tca.2013.01.031.

7. Taylor H.F.W. The Chemistry of Cements – London. – 1964. – 286 p.

8. Kuznecova, T. V. Alyuminatnye i sul'foalyuminat-nye cementy / T. V. Kuznecova. – Moskva: Stroyizdat, 1986. – 208 s. – EDN YRNAYL.

9. A. Abolhasani, B. Samali, F. Aslani, Physicochemical, mineralogical, and mechanical properties of calcium alu-minate cement concrete exposed to elevated temperatures, Materials 14 (2021) 3855, https://doi.org/10.3390/ma14143855 .

10. A. Neville The effect of warm storage conditions on the strength of concrete made with high-alumina cement, Proc. Inst. Civ. Eng. 10 (1958) 185–192, https://doi.org/10.1680/iicep.1958.2026 .

11. M. Idrees, O. Ekincioglu, M.S. Sonyal, Hydration be-havior of calcium aluminate cement mortars with mineral admixtures at different curing temperatures, Constr. Build. Mater. 285 (2021) 122839, https://doi.org/10.1016/j.conbuildmat.2021.122839 .

12. J.F. Zapata, M. Gomezc, H.A. Colorado, Characteriza-tion of two calcium aluminate cement pastes, 491–503, https://doi.org/10.1002/9781119407270.ch45 , 2017 .

13. Scrivener K.L., Calcium aluminate cements, in: J. Newman, B.S. Choo (Eds.), Adv. Concr. Technol., first ed., Elsevier, Oxford, UK, 2003.

14. D. Zhang, X. Cai, L. Hu, Effect of curing temperature on hydration of calcium aluminate cement–calcium sul-fate–limestone system, J. Mater. Civ. Eng. 30 (2018) 1–7, https://doi.org/10.1061/(asce)mt.1943-5533.0002444.

15. J. Chen, C. Liang, B. Li, E. Wang, G. Li, X. Hou, The effect of nano-γAl2O3 additive on early hydration of cal-cium aluminate cement, Constr. Build. Mater. 158 (2018) 755–760, https://doi.org/10.1016/j.conbuildmat.2017.10.071

16. R. Boris, I. Wili´nska, B. Pacewska, V. Antonoviˇc, In-vestigations of the influence of nano-admixtures on early hydration and selected properties of calcium aluminate cement paste, Materials 15 (2022), https://doi.org/10.3390/ma15144958 .

17. C. Guo, E. Wang, X. Hou, J. Chen, W. Zhang, J. Ye, S. Qin, Characterization and mechanism of early hydration of calcium aluminate cement with anatase-TiO2 nano-spheres additive, Constr. Build. Mater. 261 (2020), https://doi.org/10.1016/j.conbuildmat.2020.119922 .

18. Assarson G. Reaction of aluminous cement with water. – Symposium on the Chemistry of cements. Stokholm, 1938, p. 441.

19. K.L. Scrivener, J.L. Cabiron, R. Letourneux, High-performance concretes from calcium aluminate cements, Cement Concr. Res. 29 (1999) 1215–1223, https://doi.org/10.1016/S0008-8846(99)00103-9 .

20. S.M. Park, J.G. Jang, H.M. Son, H.K. Lee, Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing, J. CO2 Util. 21 (2017) 224–226, https://doi.org/10.1016/j.jcou.2017.07.002

21. E. Adesanya, A. Ezu, H. Nguyen, C. R¨oßler, H. Sreeni-vasan, K. Ohenoja, P. Kinnunen, M. Illikainen, Hydration of blended ladle slag and calcium aluminate cement, J. Build. Eng. 66 (2023), https://doi.org/10.1016/j.jobe.2023.105855.

22. Timashev V.V., Gorshkov V.S., Savel'ev V.G. Metody fiziko-himicheskogo analiza vyazhuschih veschestv. – M.: Vysshaya shkola, 1981.–320 s.

23. N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zim-mermann, J. Sipusic Dehydration of a layered double hy-droxide – C2AH8 // Thermochimica Acta, Volume 464, Issues 1–2, 2007, Pages 7-15, https://doi.org/10.1016/j.tca.2007.07.022.

24. Jones F. The Calcium Aluminate Compiex Salts. – 1 International Symposium on the Cemistry of cements. Stokholm, 1938, p. 127.

25. Madej D., Szczerba J., Nocuń-Wczelik W., Gajerski R. Hydration of Ca7ZrAl6O18 phase // Ceramics International 38 (2012) 3821–3827. http://dx.doi.org/10.1016/j.ceramint.2012.01.031 .

26. Madej D., Szczerba J. Study of the hydration of calci-um zirconium aluminate (Ca7ZrAl6O18) blended with re-active alumina by calorimetry, thermogravimetry and oth-er methods // J Therm Anal Calorim (2015) 121:579–588. http://dx.doi.org/10.1007/s10973-015-4633-x .

27. Fukuda K., Iwata T., and Nishiyuki K. Crystal Struc-ture, Structural Disorder, and Hydration Behavior of Calci-um Zirconium Aluminate, Ca7ZrAl6O18 // Chem. Mater. 2007, 19, 3726-3731. http://dx.doi.org/10.1021/cm070731z .

28. Kang E.-H., Yoo J.-S., Kim B.-H., Choi S.-W., Hong S.-H. Synthesis and hydration behavior of calcium zirconium aluminate (Ca7ZrAl6O18) cement // Cement and Concrete Research 56 (2014) 106–111. http://dx.doi.org/10.1016/j.cemconres.2013.11.007.

29. Krivoborodova S.Yu., Korshunov A.V. Zakonomerno-sti obrazovaniya faz pri poluchenii vysokoglinozemi-stogo cementnogo klinkera s dobavkoy dioksida cir-koniya // Tehnika i tehnologiya silikatov. – 2025. – T. 32. № 1. – S. 50-61, http://dx.doi.org/10.62980/2076-0655-2025-50-61 , EDN AIZUSO

30. Samchenko S.V., Korshunov A. V. Features of the for-mation of crystalline hydrosulfoaluminates during hydra-tion of stoichiometric mixtures of calcium aluminates with calcium sulfate // Construction and Building Materials, 393 (2023) 132102. https://doi.org/10.1016/j.conbuildmat.2023.132102

31. Valentin Antonoviča, Jadvyga Kerienėb, Renata Bori-sa, Marius Aleknevičiusa The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure // Procedia Engineering 57 (2013) 99 – 106. https://doi.org/10.1016/j.proeng.2013.04.015

Login or Create
* Forgot password?