from 01.01.2022 until now
Russian Federation
UDC 666.3.015
UDC 666.3.017
CSCSTI 81.09
Russian Classification of Professions by Education 18.06.01
Russian Library and Bibliographic Classification 35
Russian Trade and Bibliographic Classification 50
The development of ceramic materials requires a rigorous metrological approach to manage uncertainty at all stages of production and enable informed decision-making based on reliable data. The article proposes the use of Ishikawa Diagrams to quantify the contribution of each technological factor to the overall error in the properties of the final product. This allows us to systematize sources of uncertainty, minimize risks, and improve the reproducibility of properties during scaling. The main metric is the assessment of the uncertainty of measurements of the structural parameters of ceramics. The study was conducted on functional ceramics made from kaolinite raw materials from the Orenburg region using morphometry, chemical analysis, physical measurements and modeling. The analysis of the structure-property cause-and-effect relationships and the application of the Ishikawa Diagram revealed the key groups of factors influencing the error. The result was an engineering-based method for producing electroceramics with specified characteristics.
structural parameters, kaolinite, physic and chemical measurements, uncertainty of measurement results, Ishikawa Diagram
1. International Organization of Legal Metrology. Evaluation of measurement data – Guide to the expression of uncertainty in measurement. – Geneva, Switzerland, 2010. – 136 p.
2. Kirkup, L. An introduction to uncertainty in measurement using the GUM (guide to the expression of uncertainty in measurement) / L. Kirkup, R.B. Frenkel. – Cambridge; New York: Cambridge University Press, 2006. – 233 p.
3. Singh, N. et al. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorp-tion Spectrometry with hydride generator // Chemistry Central Journal. – 2011. – T. 5. – №. 1. – P. 17.
4. Ishikawa K. Introduction to Quality Control / K. Ishikawa, J.H. Loftus. 3rd ed. – Tokyo: 3A Corp., 1990. – 435 p.
5. Bogomolova S.A., Lukashov Yu.E., Shvarc M.Z. Ocenka rasshirennoy neopredelennosti rezul'tata izmereniya toka korotkogo zamykaniya tonkoplenochnyh fotoelektricheskih moduley // Izmeritel'naya tehnika. – 2013. – №. 11. – S. 7-12.
6. Knyazev, K.A. Issledovanie zavisimosti vliyaniya tehno-logicheskih parametrov na prochnost' keramicheskih karbo-nitridokremnievyh volokon / K.A. Knyazev // Informaci-onno-tehnologicheskiy vestnik. – 2022. – № 1(31). – S. 182-188. – EDN DJYNZW.
7. Opredelenie tehnologicheskih parametrov, vliyayuschih na kachestvo keramicheskih karbonitridokremnievyh volokon na osnove prekursorov otechestvennogo proizvodstva / K.A. Knyazev, P.A. Timofeev, A.N. Timofeev, O.G. Ryzhova // Teh-nologiya mashinostroeniya. – 2021. – № 11. – S. 5-12. – EDN WSUKPT.
8. Antipova, T.N. Obosnovanie faktorov tehnologicheskogo processa izgotovleniya uglerod-keramicheskogo kompozi-cionnogo materiala metodom propitki rasplavami, opre-delyayuschih kachestvo poluchaemogo materiala / T.N. Antipo-va, V.A. Volkova // Informacionno-tehnologicheskiy vest-nik. – 2020. – № 2(24). – S. 150-160. – EDN KKQBDA. – https://doi.org/10.21499/2409-1650-2020-24-2-150-160 .
9. Chokkalingam B. et al. Application of Ishikawa diagram to investigate significant factors causing rough surface on sand casting // Proc. Eng. Sci. – 2020. – T. 2. – №. 4. – P. 353-360. – https://doi.org/10.24874/PES02.04.002
10. Shilar F. A. et al. Preparation and validation of sustainable metakaolin based geopolymer concrete for structural applica-tion // Construction and Building Materials. – 2023. – T. 371. – P. 130688. – https://doi.org/10.1016/j.conbuildmat.2023.130688 .
11. Tegegne A., Singh A. P. Experimental analysis and Ishika-wa diagram for burn on effect on manganese silicon alloy me-dium carbon steel shaft // International Journal for quality research. – 2013. – T. 7. – №. 4. P. 545-558.
12. Tynchenko V.S. et al. System Diagnostics of Supporting-Rod Porcelain Insulation at Digital Substations //WSEAS Transactions on Power Systems. – 2021. – T. 16. – P. 195-203. – https://doi.org/10.37394/232016.2021.16.20 .
13. Bhamu J., Sangwan K. S. Reduction of post-kiln rejections for improving sustainability in ceramic industry: a case study // Procedia Cirp. – 2015. – T. 26. – P. 618-623. – https://doi.org/10.1016/j.procir.2014.07.176 .
14. Rocio, L.C. et al. Enhancing Craft Skills: The Vital Impact of Training in The Ceramic Industry of Lima, Peru // 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Ed-ucation, Research, and Industry for a Society 5.0: proceedings of the conference, Hybrid Event, San Jose, Costa Rica, July 17-19, 2024. – P. 1-11. – https://doi.org/10.18687/LACCEI2024.1.1.1786 .
15. Korrekciya strukturnoy formuly kaolinita Oren-burgskoy oblasti spektroskopicheskimi metodami / A.G. Chetverikova, V.N. Makarov, O.N. Kanygina [i dr.] // Kon-densirovannye sredy i mezhfaznye granicy. – 2023. – T. 25, № 2. – S. 277-291. – https://doi.org/10.17308/kcmf.2023.25/11108 . – EDN SOLDIM.
16. Bobrovskaya, N. Yu. Kriterii ocenki kachestva koordi-natnyh izmereniy geometricheskih parametrov detaley na opytno-eksperimental'nom proizvodstve / N. Yu. Bobrov-skaya, M. F. Danilov // Izmeritel'naya tehnika. – 2019. – № 12. – S. 3-8. – https://doi.org/10.32446/0368-1025it.2019-12-3-8. – EDN IQRBXL.
17. Harakteristika kaolinovyh glin mestorozhdeniya Svet-linskogo rayona Orenburgskoy oblasti / O.N. Kanygina, A.G. Chetverikova, G.Zh. Alpysbaeva [i dr.] // Steklo i kera-mika. – 2020. – № 9. – S. 34-40. – EDN: https://elibrary.ru/QYQQQR.
18. Vliyanie usloviy izmel'cheniya keramicheskih poroshkov YAG na svoystva opticheskoy keramiki / Suprunchuk V.E., Kravcov A.A., Lapin V.A. [i dr.] // Steklo i keramika. 2023. T. 96, № 11. S. 35 – 46. https://doi.org/10.14489/glc.2023.11.pp.035-046 .
19. Osipov V. I. Gliny i ih svoystva. Sostav, stroenie i formirovanie svoystv: monografiya / V. I. Osipov, V. N. Sokolov. – Moskva: Geos, 2013. – 578 s.
20. Roldugin, V. I. Fraktal'nye struktury v dispersnyh sistemah / V. I. Roldugin // Uspehi himii. – 2003. – T. 72, № 10. – S. 931-959. – EDN: https://elibrary.ru/HVEQFL.
21. Shaldybin M. V. et al. A kaolinitic weathering crust in Tomsk, West Siberia: Interpretation in the context of weather-ing crusts in Russia and elsewhere // Catena. – 2019. – T. 181. – P. 104056. – https://doi.org/10.1016/j.catena.2019.05.002 .
22. Anisovich, A.G. Rentgenostrukturnyy analiz v prakti-cheskih voprosah materialovedeniya: monografiya / A. G. Anisovich. - Minsk: Belaruskaya navuka, 2017. - 208 s.
23. Grevcev, V. A. Aspekty primeneniya metoda elektronno-go paramagnitnogo rezonansa v issledovaniyah nerudnogo syr'ya / V. A. Grevcev, T. Z. Lygina // Razvedka i ohrana nedr. – 2010. – № 8. – S. 34-39. – EDN MUPGPV.
24. Veyvlet-analiz izobrazheniy poverhnosti keramiche-skih materialov kak metod izmereniya razmerov ee struk-turnyh elementov / M. M. Filyak, A. G. Chetverikova, O. N. Kanygina, I. N. Anisina // Izmeritel'naya tehnika. – 2020. – № 2. – S. 50-54. – https://doi.org/10.32446/0368-1025it.2020-2-50-54 . – EDN: https://elibrary.ru/NZYDOO.
25. Shao X.G., Leung A.K.M., Chau F.T. Wavelet: a new trend in chemistry // Accounts of Chemical Research. – 2003. – T. 36. – №. 4. – P. 276-283. – https://doi.org/10.1021/ar990163w .
26. Cheung Y. M. et al. Identifying the characteristics of FTIR spectra of herba epimedii icariin via wavelet analysis and RBF neural network //Spectroscopy and Spectral Analysis. – 2009. – T. 29. – №. 7. – P. 1830-1834. – https://doi.org/10.3964/j.issn.1000-0593(2009)07-1830-05 .
27. Drzewiecki A., Sczaniecki P.B. Wavelet analysis in EPR spectroscopy // Acta Physica Polonica A. – 2005. – T. 108. – №. 1. – P. 73-79. – https://doi.org/10.12693/APhysPolA.108.73
28. Li Z. et al. A high sensitivity micro-ring humidity sensor based on U-shaped waveguide coupled single micro-ring structure // Spectroscopy and Spectral Analysis. – 2015. – T. 35. – №. 2. – P. 563-567. – https://doi.org/10.3964/j.issn.1000-0593(2015)02-0563-05
29. Li F. et al. Establishment and Improvement of Portable X-Ray Fluorescence Spectrometer Detection Model Based on Wavelet Transform // Spectroscopy and Spectral Analysis; Guang pu xue yu Guang pu fen xi= Guang pu. – 2015. – T. 35. – №. 4. – P. 1111-1115.
30. Fodchuk I.M., Roman Yu.T., Balovsyak S.V. Novyy podhod k analizu rentgenovskih difraktogramm na osnove veyvlet-preobrazovaniy // Metallofizika i noveyshie tehnologii. – 2017. – T. 39. – №. 7. – S. 855-863. – https://doi.org/10.15407/mfint.39.07.0855
31. Sharenkova N.V. i dr. Vliyanie razmerov oblastey koge-rentnogo rasseyaniya rentgenovskogo izlucheniya na elektri-cheskie parametry poluprovodnikovogo SmS // Fizika tverdogo tela. – 2008. – T. 50. – №. 7. – S. 1158-1161. – EDN: https://elibrary.ru/RCRJGD.
32. Buzimov A.Yu. i dr. Vliyanie mehanicheskoy obrabotki na strukturu i svoystva prirodnogo ceolita // Perspek-tivnye materialy. – 2018. – №. 4. – S. 31-39. – https://doi.org/10.30791/1028-978X-2018-4-31-39
33. Suzdal'cev, E. I. Tehnologicheskoe oborudovanie dlya sushki i obzhiga zagotovok iz keramicheskih materialov / E. I. Suzdal'cev, D. V. Haritonov // Ogneupory i tehnicheskaya keramika. – 2007. – № 2. – S. 40-45. – EDN: https://elibrary.ru/MWMWGZ.
34. Patent na poleznuyu model' № 193586 U1 Rossiyskaya Federaciya, MPK F27B 3/02. Pech' dlya obzhiga keramiche-skih izdeliy: № 2019123888: zayavl. 29.07.2019: opubl. 06.11.2019 / Ya. A. Bahmurov, A. V. Buzunov. – EDN: https://elibrary.ru/BDDHKW.
35. Svidetel'stvo o gosudarstvennoy registracii pro-grammy dlya EVM № 2016619312 Rossiyskaya Federaciya. Programma dlya rascheta cvetovyh parametrov L, a, b i L, u, v po opticheskim izobrazheniyam keramicheskih materialov: № 2016617020: zayavl. 01.07.2016: opubl. 17.08.2016 / A. G. Chetverikova, O. G. Kanygina, L. V. Mezhueva; zayavitel' Fe-deral'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Orenburgskiy gosu-darstvennyy universitet». – EDN: https://elibrary.ru/MKMDHD.
36. Patent EAPV №007190. Sposob nerazrushayuschego kon-trolya struktury keramiki, avtory: O.N. Kanygina, A.G. Chetverikova. Zayavka na izobretenie №200500245, data po-dachi: 21.02.2005.
37. Optiko-fizicheskie metody registracii slabyh struk-turnyh otklikov dispersnyh glinistyh sistem na vozdey-stvie mikrovolnovogo izlucheniya / A.G. Chetverikova, O.N. Kanygina, M.M. Filyak, E.S. Savinkova // Izmeritel'naya tehnika. – 2017. – № 11. – S. 27-31. – EDN: https://elibrary.ru/ZWJFQR.
38. Kapustin R.D., Uvarov V.I., Kirillov A.O. Harakteri-stiki i morfologiya porovogo prostranstva vysokopori-styh keramicheskih materialov, sintezirovannyh na osnove Sc2O3 // Steklo i keramika. – 2023. – T. 96. – № 11. – S. 26-34. – https://doi.org/10.14489/glc.2023.11.pp.026-034
39. Patent № 2802765 C1 Rossiyskaya Federaciya, MPK C04B 33/04, C04B 33/30, C04B 33/32. Sposob polucheniya funkcional'noy keramiki iz prirodnogo neobogaschennogo glinistogo syr'ya: № 2022126848: zayavl. 17.10.2022: opubl. 01.09.2023 / A. G. Chetverikova, V. L. Berdinskiy, O. N. Kanygina, L. V. Mezhueva; zayavitel' Federal'noe gosu-darstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vys-shego obrazovaniya «Orenburgskiy gosudarstvennyy uni-versitet». – EDN HCFFKA.
40. Sintez mullitokremnezemistoy keramiki s uluchshen-nymi elektrofizicheskimi harakteristikami / A.G. Chetve-rikova, V.N. Makarov, A.R. Sadykov [i dr.] // Steklo i kera-mika. – 2025. – T. 98, № 9(1173). – S. 37-47. – https://doi.org/10.14489/glc.2025.09.pp.037-047 – EDN JILDIN.



