employee
Moscow, Moscow, Russian Federation
UDC 691.32
CSCSTI 67.09
Russian Classification of Professions by Education 08.06.01
Russian Library and Bibliographic Classification 383
Russian Trade and Bibliographic Classification 6005
The construction of monolithic vertical structures from vibrating concrete mixtures is often accompanied by the formation of concrete surface defects in the form of irregularities, pores and cavities, which increases their permeability and worsens their properties. The analysis of works in the field of improving the operational properties of concrete has shown the effectiveness of complex chemical additives, which can significantly increase water and frost resistance. In this paper, the possibility of obtaining architectural self-compacting concrete with in-creased performance properties and reduced surface porosity is considered, achieved through the combined use of Portland cement binder, ground blast furnace granular slag, polycarboxylate superplasticizer, antifoaming admixture based on glycolic ether and an air-entraining additive based on an amphoteric surfactant. Based on the method of mathematical experimental planning, the optimal composition of self-compacting concrete was developed and multifactorial quadratic dependences of workability, viscosity, average density of concrete, entrained air content, compressive strength of concrete, surface porosity on the content of air-entraining additives and antifoaming admixture were obtained. It was found that the joint introduction of a polycarboxylate superplasticizer, an air-entraining additive based on an amphoteric surfactant and a antifoaming admixture based on glycolic ether leads to a decrease in surface porosity by 8.2-10.7 times and a pore size, the distances between them by 1.2 times, the total pore area by 8.3-11.8 times, ensuring a predominant pore content with a diameter of 12-22 microns in an amount of 65%. It was also shown that the developed concrete mixtures have high water resistance W20, frost resistance F_1 500, determined by the third accelerated method, with peeling of the surface from 5 to 7% and a depth of 0.1 mm, loss of strength from 4.6 to 5.6% compared with the control composition.
Self-compacting concrete, flowability of self-compacting concrete mixtures, bleeding, complex chemical additive, polycarboxylate esters, anti-foaming admixture, air-entraining additive, optimization of concrete composition, frost resistance, water resistance.
1. Larsen O.A., Solodov A.A., Bahrah A.M. Issledovanie vli-yaniya penogasitelei ̆na osnovnye svoĭstva plastificirovanno-go cementnogo testa // Stroitel'nye materialy. 2025. No 3. S. 74–81. https://doi.org/10.31659/0585-430X-2025-833-3-74-81
2. Larsen, O.A.; Samchenko, S.V.; Zemskova, O.V.; Korshunov, A.V.; Solodov, A.A. Self-Compacting Mixtures of Fair-Faced Concrete Based on GGBFS and a Multicomponent Chemical Ad-mixture—Technological and Rheological Properties. Buildings 2024, 14,3545.
3. Solodov A.A., Larsen O.A. Arhitekturnye fasadnye beto-ny dlya monolitnogo stroitel'stva. V sbornike: Tradicii, sovremennye problemy i perspektivy razvitiya stroitel'-stva. Sbornik nauchnyh statey. Redkollegiya: A.R. Volik (gl. red.) [i dr.]. Grodno, 2022. S. 190-193.
4. Metodicheskie ukazaniya po primeneniyu arhitekturnyh betonov, FAU «Federal'nyy centr normirovaniya, standar-tizacii i tehnicheskoy ocenki sootvetstviya v stroitel'stve», 2019, Moskva. S. 70.
5. European Project Group. 2005, The European guidelines for self-compacting concrete: specification, production and use, Avail-able from Internet: http://www. efnarc. org/ pdf/SCCGuidelinesMay2005.
6. Hedda Vikan. SINTEF Community / Architecture, Materials and Structures ISBN: 9788253609669
7. Huang K.Z., Gong M.Z., Chen X. Study on effects of air-entraining and anti-foaming on performance and apparent mor-phology of fair-faced concrete // Concrete 2014.No 1. Pp. 111–113.
8. Belmonte I., Saorin F., Paya M. Quality of the surface finish of self-compacting concrete // Journal of Building Engineering. 2020. Vol. 28. Pp. 101068.
9. Lemaire G., Escadeillas G., Ringot E. Evaluating concrete sur-faces using an image analysis process // Construction and Building Materials. 2005. Vol. 19. Pp. 604-611.
10. Linder R. Pores, blowholes. Wood inclusion in fair-Faced concrete surfaces. Coatings and floor surfaces, Part 1, Betonwerk, Fertigteil-technik, 1992. No 5. Pp. 67-74.
11. Kaprielov S.S., Sheynfel'd A.V., Selyutin N.M. Samo-uplotnyayuschiysya vysokoprochnyy keramzitobeton klassov B50-B65 - novoe pokolenie legkih betonov dlya konstrukciy vy-sotnyh zdaniy // Stroitel'nye materialy. 2023. № 4. S. 42-50.
12. Kaprielov S.S., Sheynfel'd A.V., Kardumyan G.S., Chilin I.A. O podbore sostavov vysokokachestvennyh betonov s orga-nomineral'nymi modifikatorami // Stroitel'nye materia-ly. 2017. No 12. S. 58-63.
13. Gaimster R., Dixon N. Self-compacting concrete. In book: Advanced Concrete Technology. 2003. Vol. 4. Pp. 1-23. https://doi.org/10.1016/B978-075065686-3/50295-0 . ISBN: 978-0-7506-5686-3
14. Domone P.L., Chai H.-W. Design and testing of self-compacting concrete. Production, methods and workability of con-crete. RILEM International Conference, Eds P.J.M. Bartos, D.L. Marrs and D.J. Cleland, 1996. Pp. 199-208.
15. Larsen O.A. Vliyanie mineral'nyh i organicheskih modi-fikatorov na formirovanie struktury samouplotnyayuschihsya betonov // Tehnika i tehnologiya silikatov. – 2025. – T. 32, № 3. – S. 272-282. http://dx.doi.org/10.62980/2076-0655-2025-272-282
16. Powers T. C. The air requirement of frost-resistant concrete, Proceedings, Highway. Research Board. 1949. No 29. Pp. 184-202.
17. Gorchakov G. I. Povyshenie morozostoykosti i prochnosti betona Moskva: Promstroyizdat, 1956. 107 s.
18. Powers T.C. A working hypothesis for futher studies of frost resistance of concrete. American Concrete Institute. 1945. Bulletin 5. No. 4. Vol. 16. Pp. 245-272.
19. Konoplenko A.I. K voprosu teorii morozostoykosti be-tona // V sb.: Voprosy stroitel'stva i proizvodstva stroi-tel'nyh izdeliy. Rostovskiy inzhenerno-stroitel'nyy uni-versitet. Rostov-na-Donu, 1958, vyp. HSh, s. 8-II. 58.
20. Valenta M. Nouvelles recherches sur la gelivite des betons Les Betons aeres. Annales de l'Institut Technique du Batiment et des Travaux Publics, Beton, Beton Armé. No. 3, 1948.
21. Stol'nikov V. V. Issledovaniya po gidrotehnicheskomu betonu. Vsesoyuz. nauch.-issled. in-t gidrotehniki im. B. E. Vedeneeva. - Moskva; Leningrad: Gosenergoizdat, 1962. 330 s.
22. Rekomendacii po uskorennomu metodu ispytaniya gidro-tehnicheskogo betona na prochnost'. Vsesoyuz. nauch.-issled. in-t gidrotehniki im. B. E. Vedeneeva. - Leningrad: Energiya. Le-ningr. otd-nie, 1974. 11 s.
23. Gorchakov G. I., Kapkin M. M., Skramtaev B. G. Povyshe-nie morozostoykosti betona v konstrukciyah promyshlennyh i gidrotehnicheskih sooruzheniy. M.: Stroyizdat, 1965 g. 194 s.
24. Shestoperov S. V., Ivanov F. M., Zaschepin A. N., Lyubi-mova T. Yu. Cementnyy beton s plastificiruyuschimi dobav-kami. Moskva: Dorizdat, 1952. 107 s.
25. Rekomendacii po podboru sostavov betonnyh smeseĭ dlya tyazhelyh i melkozernistyh betonov. Metodicheskoe posobie. NIIZhB im. A. A. Gvozdeva AO «NIC «Stroitel'stvo». Moskva. 2016. S. 100.
26. Oficial'nyy sayt SunSpire Art group [Elektronnyy re-surs]. Rezhim dostupa: https://www.sunspire.ru .
27. Rebinder P. A. Poverhnostno-aktivnye veschestva. Moskva: Znanie, 1961. 46 s.
28. Stol'nikov V. V., R. E. Litvinova. Treschinostoykost' betona. Moskva: Energiya, 1972. 113 s.
29. Du L., Folliard K.J. Mechanisms of air entrainment in concrete // Cement and Concrete Research. 2005. Vol. 35. Pp. 1463–1471.
30. Zedginidze I.G. Planirovanie eksperimenta dlya issledo-vaniya mnogokomponentnyh sistem. Tbilisi. 1976. 390 s.
31. Danilov, A. M., Gar'kina, I. A., Koroleva, O. V., Smir-nov, V. A. Matematicheskie metody pri razrabotke i upravle-nii kachestvom materialov special'nogo naznacheniya // Stroi-tel'nye materialy. 2010. № 3. S. 112-117. EDN: https://elibrary.ru/MSTUCD
32. Korolev E. V., Inozemcev A. S., Inozemcev S. S. Kom-pleksnyy podhod dlya tehniko-ekonomicheskogo obosnovaniya vnedreniya novyh stroitel'nyh materialov // Vestnik Po-volzhskogo gosudarstvennogo tehnologicheskogo universiteta. Ser.: Materialy. Konstrukcii. Tehnologii. 2019. № 4(12). S. 8-18. – http://dx.doi.org/10.25686/2542-114X.2019.4.8



