UDK 691.32 Бетоны. Бетонные и железобетонные изделия
GRNTI 67.09 Строительные материалы и изделия
OKSO 08.06.01 Техника и технологии строительства
BBK 383 Строительные материалы и изделия
TBK 5415 Строительные материалы и изделия. Производство стройматериалов
An approach to the production of conductive concrete with the heating property based on a Portland cement binder and conductive components is presented. The influence of the content of conductive components introduced into the con-crete mixture, which are carbon black K-354 and P-803, graphite, carbon fiber on conductive properties, is considered. The influence of the presence of free water in the pore space of concrete on the formation of a conductive structure with the content of conductive components below the percolation threshold of electric current has been studied. The influence of the volume concentration of conductive components on the value of electrical resistivity and its change during the hardening process at the age of 3 to 56 days is shown. The compositions of a composite conductive material based on Portland cement, carbon black and carbon fiber with a specific electrical resistance from 1.12 to 0.26 Ohm·m at the age of 56 days are obtained, which do not change significantly during hardening and further use.
Portland cement, carbon black, carbon fiber, electrical resistivity
1. Gul' V.E. Shenfil' L.Z. Elektroprovodyaschie polimernye kompozicii. M.: Himiya, 1984. 240 s.
2. Balkevich V.L. Tehnicheskaya keramika: Uchebnoe posobie dlya vuzov, 2-eizd., pererab. i dop. M.: Stroyizdat, 1984. 256 s.
3. Gorelov V.P. Primenenie rezin s elektroprovodyaschim uglerodom PME-100V v elektroobogrevaemyh panelyah sel'skohozyaystvennogo naznacheniya // Poluchenie i svoystva elektroprovodyaschego tehnicheskogo ugleroda. M., 1981. S. 12--123.
4. Novye materialy. / Pod red. Yu.S. Karabasova. M: «MISiS», 2002. 736 s.
5. Vorozhencev Yu.I., Gol'dade V.A., Pinchuk L.S., Snezhkov V.V. Elektricheskie i magnitnye polya v tehnologii polucheniya polimernyh kompozitov / pod red. A.I. Sviridenka. Minsk: Nauka i tehnika, 1990. 26 s.
6. Elektricheskie svoystva polimerov / pod red. B.I. Sazhina: 3-e izd. L., 1986. 224 s.
7. Wyzkiewicz I. et al. Self-regulationg heater for microfluidic reac-tors // Sensor Actuat B-Chem. 2014. No. 1. Pp. 893-896. DOI:https://doi.org/10.1007/s11483-007-9043-6.
8. Duvakina N. I. Vybor napolniteley dlya pridaniya special'nyh svoystv polimernym materialam / N. I. Duvakina, N. I. Tkacheva // Plasticheskie massy. – 1989. № 11. C. 46 – 48.
9. Arhipov N. V. Elektricheskie svoystva poroshkov tehnicheskogo ugleroda / N. V. Arhipov, V. N. Anikeev // Sovershenstvovanie tehnologii proizvodstva aktivnyh i sredneaktivnyh marok tehnicheskogo ugleroda: sb. nauch. tr. VNIITU. M., 1986. C.143-147.
10. Estrin R. I. Ob'em i razmery por v pervichnyh agregatah tehnicheskogo ugleroda kak faktory, vliyayuschie na elektricheskie harakteristiki vulkanizatorov / R. I. Estrin, N. Ya. Ovsyannikov // Vestnik MITHT. 2008. T. 3. № 3. S. 1-7.
11. Sircar A. K. Effect of carbon-black particle-size distribution on electrical-conductivity / A. K. Sircar, T. G. Lamond // Rubber Chem. Technol. 1978. Vol. 51. P. 126.
12. Voet A. Investigation of carbon chains in rubber vulcanizates by means of dynamic elecrical conductivity / A.Voet, F. R. Cook // Rubber Chem. Technol. 1968. Vol. 41. P. 1207.
13. Boonstra B. Performance of Carbon Blacks - Influence of Sur-face Roughness and Porosity / B. B. Boonstra, E. M. Dannenberg // Industrial and Engineering Chemistry. 1955. Vol. 47. P. 339.
14. Medalia A. I. Electrical conduction in carbon black composites / A. I. Medalia // Rubber Chemichal Technology. 1986. Vol. 59. P. 432.
15. Verhelst W. F. The role of morphology and structure of carbon blacks in the electrical conductance of vulcanizates / W.F. Verhelst [et al.] // Rubber Chemical Technology. 1977. V. 50. P. 735.
16. Kraus G. Electrical Conductivity of Carbon Black-Reinforced Elastomers / G. Kraus, J. F.Svetlik // Journal of Electrochemical Society. 1956. V. 103. P. 337.
17. Kiseleva E.A. Upravlenie elektrosoprotivleniem rezin putem regulirovaniya defektnost'yu struktury dispersnogo ugleroda / E. A. Kiseleva G. I. Razd'yakonova // Dinamika sistem, mehanizmov i mashin. 2012. № 3. S. 192-196.
18. Yagubov V.S., Schegol'kov A.V. Samoreguliruemyy elektronagrevatel' na osnove elastomera, modificirovannyy mnogosloynymi uglerodnymi nanotrubkami // Vestnik VGUIT. 2018. T. 80. № 3. S. 341–345.
19. Yagubov V.S., Schegol'kov A.V. Vliyanie razlichnyh tipov uglerodnyh nanotrubok i ih koncentraciy na elektrofizicheskie parametry elektronagrevateley s samoregulirovaniem temperatury // Vestnik TGTU. 2019. T. 25. № 4. S. 678–689.
20. Abdullin M.I., Glazyrin A.B, Basyrov A.A., Gadeev A.S., Nikolaeva A.A. Elektroprovodyaschie polimernye kompozicii na osnove polivinilacetata // Plasticheskie massy. 2018. № 1-2. S. 54-57.
21. Bazhenov Yu.M. Tehnologiya betona: uchebnik dlya studentov vysshih uchebnyh zavedeniy / Yu.M. Bazhenov. M.: Izdatel'stvo ASV, 2011. 375s.
22. Terehin I.A., Kremlev I.A., Kondrat'ev Yu.V. i dr. Model'noe predstavlenie suhogo betona zhelezobetonnogo fundamenta kontaktnoy seti, kak elektricheskogo provodnika // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. – 2015. – № 3. – S. 88–92.
23. Titova T.S., Sacuk T.P., Terehin I.A., Tarabin I.V. Ocenka usloviy elektrobezopasnosti pri primenenii opor kontakt-noy seti v kachestve estestvennyh zazemliteley // Elektroteh-nika. – 2021. – № 2. – S. 7–11.
24. Fedyuk R.S., Kuz'min D.E., Batarshin V.O., i dr. Elektroprovodyaschie betony dlya special'nyh sooruzheniy // Bezopasnost' stroitel'nogo fonda Rossii. Problemy i resheniya. – 2017. – № 1. – S. 51–57.
25. Galao O., Banon L., Carmona J., Highly conductive carbon fiber reinforced concrete for icing prevention and curing. // Construction and building materials, № 52. pp. 137-145, 2016.
26. Gomis J., Galao O., Gomis V., Zornoza P., Self-heating and deicing conductive cement. // Construction building materials, № 75. pp. 442-449, 2015.
27. Yu X., Kwon E., Carbon Nanotube Based Self-sensing Concrete for Pavement Structural Health Monoliting, // Cement and concrete composites, № 54. pp. 110-116, 2014.
28. Sircar A. K. Effect of carbon-black particle-size distribution on electrical-conductivity / A. K. Sircar, T. G. Lamond // Rubber Chem. Technol. 1978. Vol. 51. P. 126.
29. Voet A. Investigation of carbon chains in rubber vulcanizates by means of dynamic elecrical conductivity / A.Voet, F. R. Cook // Rubber Chem. Technol. 1968. Vol. 41. P. 1207.
30. Boonstra B. Performance of Carbon Blacks - Influence of Surface Roughness and Porosity / B. B. Boonstra, E. M. Dannenberg // Industrial and Engineering Chemistry. 1955. Vol. 47. P. 339.
31. Medalia A. I. Electrical conduction in carbon black composites / A. I. Medalia // Rubber Chemichal Technology. 1986. Vol. 59. P. 432.
32. Samchenko, S. V. Formirovanie i genezis struktury cementnogo kamnya / S. V. Samchenko. – 2-e izdanie. – Moskva: Nacional'nyy issledovatel'skiy Moskovskiy gosudarstvennyy stroitel'nyy universitet, 2020. – 288 s. – ISBN 978-5-7264-2808-6. – EDN KCBIBU.
33. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasara-nov S.A., Ardashova G.R., Fediuk R.S., Svintsov A.P., Ivanov I.A. Mechanical and electrical properties of concrete modified by carbon nanoparticles // Magazine of Civil Engineering. 2019. №8 (92).
34. Seongwoo Gwon, Hyunjun Kim, Myoungsu Shin, Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber, Cement and Concrete Composites, Volume 137, 2023, 104942, ISSN 0958-9465.
35. Pulatov A.A., Beton elektroprovodnyy plasticheskogo formovaniya na elektrokompozicionnom vyazhuschem. / A.A. Pulatov. — Moskva: MGSU, 1995. — 150s.
36. Larsen O.A., Bahrah A.M. Kompozicionnoe vyazhuschee dlya tokoprovodyaschego betona //Tehnika i tehnologiya silikatov. 2021. T. 28. №3. S. 127 – 131