PROSPECTS FOR THE USE OF POLYMER WASTE AS CONCRETE AGGREGATES
Abstract and keywords
Abstract (English):
The main aspects of the use of polymer waste as concrete aggregates are presented. Based on the analysis of literature sources, it was found that crushed polymer waste, including hard to recycle crosslinked polymers, can be used as an aggregate in concrete, which can significantly reduce their negative impact on the environment. The introduction of a polymer aggregate reduces the density and thermal conductivity of the concrete, increases its abrasion resistance, erosion resistance and chemical resistance, can slightly reduce shrinkage and the formation of microcracks. At the same time, concretes with polymer aggregate have reduced mechanical characteristics compared to traditional concretes, which modern scientists attribute to insufficient adhesion of the polymer aggregate to the cement matrix, their elastic incompatibility and limited hydration reaction near the grains of the polymer aggregate. To increase the adhesion of the aggregate to the cement ma-trix, it is necessary to provide an irregular, rough surface of the polymer particles. It is possible to apply special compositions to the aggre-gate particles that increase the adhesive properties or introduce polymer additives into the cement matrix. To ensure high mechanical characteristics of concretes with polymer waste, it is preferable to use waste with the highest modulus of elasticity to reduce the elastic incompatibility of the aggregate and the matrix and ensure unloading of the mortar part. Concretes with polymer waste aggregate can be used in the construction of floors, tile elements, facade elements, wall blocks. The use of polymer waste is also possible in the composition of chemically resistant concretes.

Keywords:
Recycling, polymer waste, aggregate, concrete, density, fracture pattern, plasticity, chemical resistance, abrasion resistance, adhesion, modulus of elasticity
References

1. Speranskaya O., Ponizova O., Citcer O., Gurskiy Ya. Plastik i plastikovye othody v Rossii: situaciya, problemy i rekomendacii. Mezhdunarodnaya Set' po Likvidacii Zagryazniteley. 2021.

2. Browne M. A., Galloway T. S., Thompson R. What is the extent of microplastic contamination in habitats? Integrat-ed Environmental Assessment and Management. − 2007. − Vol. 3, No. 4. − Pp. 559–561. DOI:https://doi.org/10.1002/ieam.5630030412.

3. Gu L., Ozbakkaloglu T. Use of recycled plastics in concrete: A critical review. Waste Management. Elsevier Ltd. − 2016. − No. 51. − Pp. 19–42. DOI:https://doi.org/10.1002/ieam.5630030412.

4. Rossiyskaya Federaciya. Prikaz. Ob utverzhdenii Strategii razvitiya himicheskogo i neftehimicheskogo kompleksa na period do 2030 goda: prikaz ot 8 aprelya 2014 goda №651/172 [Elektronnyy resurs]. URL: https://docs.cntd.ru/document/420245722?marker=6560IO§ion=text (Data obrascheniya: 06.09.2024).

5. Kirin B.S., Klokova A.N. Sovremennye tehnologii razdeleniya othodov plastmass // Uspehi v himii i himicheskoy tehnologii. − 2014. − T. 28, № 3. − C. 31–33.

6. Mankotia K., Singh Chohan J., Singh R. On technological solutions for recycling of recycling of polymer waste: A review. E3S Web of Conferences. EDP Sciences. − 2024. − Vol. 509. DOI:https://doi.org/10.1051/e3sconf/202450903011.

7. Siddique R., Khatib J., Kaur I. Use of recycled plastic in concrete: A review. Waste Management. − 2008. − Vol. 28, No. 10. Pp. 1835–1852. DOI:https://doi.org/10.1016/j.wasman.2007.09.011.

8. Silva R. V., De Brito J., Saikia N. Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates. Cement & Concrete Composites. − 2013. − Vol. 35, No. 1. − Pp. 23–31. DOI:https://doi.org/10.1016/j.cemconcomp.2012.08.017.

9. Rahmani E., Dehestani M., Beygi M.H.A., Allahyari H., Nikbin I.M. On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials. − 2013. − Vol.47. − Pp.1302–1308. DOI:https://doi.org/10.1016/j.conbuildmat.2013.06.041.

10. Galvão J. C. A., Portella K. F., Joukoski A., Mendes R., & Ferreira, E. S. Use of waste polymers in concrete for repair of dam hydraulic surfaces. Construction and Building Materials. − 2011. − Vol.25, No.2. − Pp.1049–1055. DOI:https://doi.org/10.1016/j.conbuildmat.2010.06.0.

11. Ismail Z. Z., & AL-Hashmi E. A. Use of waste plastic in concrete mixture as aggregate replacement. Waste Management. – 2008. − Vol.28. No.11. − Pp.2041–2047. DOI:https://doi.org/10.1016/j.wasman.2007.08.023.

12. Rai B., Rushad S. T., Kr B., & Duggal S. K. Study of Waste Plastic Mix Concrete with Plasticizer. ISRN Civil Engineering. − 2012. DOIhttps://doi.org/10.5402/2012/469272.

13. Fraj A. Ben, Kismi M., Mounanga P. Valorization of coarse rigid polyurethan foam waste in lightweight aggregate concrete Construction and Building Materials. − 2010. – No. 6. DOI:https://doi.org/10.1016/j.conbuildmat.2009.11.010.

14. Pelisser F., Montedo O. R. K., Gleize P. J. P., & Roman H. R. Mechanical properties of recycled PET fibers in concrete. Materials Research. − 2012. − Vol.15, No.4. − Pp.679–686. DOIhttps://doi.org/10.1590/s1516-14392012005000088.

15. Frigione M. Recycling of PET bottles as fine aggregate in concrete. Waste Management. − 2010. − Vol. 30, No. 6. − Pp. 1101–1106. DOI:https://doi.org/10.1016/j.wasman.2010.01.030.

16. Thorneycroft J., Orr J., Savoikar P., Ball R.J. Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and building materials. − 2018. − No.161. − Pp.63-69. DOI:https://doi.org/10.1016/j.conbuildmat.2017.11.127.

17. Ghernouti Y., Rabehi B. Strength and durability of mortar made with plasticsbag waste (MPBW). International Journal of Concrete Structures and Materials. − 2012. − Vol.6, No.3. − Pp.145-153. DOI:https://doi.org/10.1007/s40069-012-0013-0.

18. Salim K., Houssam A., Belaid A., Brahim H. Rein-forcement of building plaster by waste plastic and glass. ICSI 2019 The 3rd International Conference on Structural Integrity. − 2019. − Vol.17. − Pp. 170-176. DOI:https://doi.org/10.1016/j.prostr.2019.08.023.

19. Kou S.C., LeeG., PoonC.S., Lai W.L. Properties of light-weight aggregate concrete prepared with PVC granules de-rived from scraped PVC pipes. Waste management. − 2009. − Vol.29, No.2. − Pp. 621–629. DOI:https://doi.org/10.1016/j.wasman.2008.06.014.

20. Choi Y.W., Moon D.J., Chung J.S., Cho S.K. Effects of waste PET bottles aggregate on the properties of concrete. Cement and concrete research. − 2005. − Vol. 35, No.4. − Pp. 776–781. DOI:https://doi.org/10.1016/j.cemconres.2004.05.014.

21. Alqahtani F.K., Iqbal Khan M., Ghataora G., Dirar S. Production of recycled plastic aggregates and its utilization in concrete. Journal of Materials in Civil Engineering. − 2017. − Vol.29, No.4. DOI:https://doi.org/10.1061/(asce)mt.1943-5533.0001765.

22. Tang W. C., Lo Y., & Nadeem A. Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete. Cement and Concrete Composites. − 2008. − Vol.30. No.5. − Pp.403–409. DOI:https://doi.org/10.1016/j.cemconcomp.2008.01.002.

23. Akçaözoǧlu S., Atiş C.D., Akçaözoǧlu K. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management. − 2010. − Vol. 30, No.2. − Pp. 285–290. DOI:https://doi.org/10.1016/j.wasman.2009.09.033.

24. Samchenko S.V., Larsen O.A. Modifying the sand concrete with recycled tyre polymer fiber to increase the crack resistance of building structures // Buildings. 2023. T. 13. № 4. S. 897. https://doi.org/10.3390/buildings13040897

25. Karahan O., & Atiş C. D. The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design. − 2011. − Vol.3, No.2. − Pp.1044–1049. DOI:https://doi.org/10.1016/j.matdes.2010.07.011.

26. Wongtanakitcharoen T., & Naaman A. E. Unrestrained early age shrinkage of concrete with polypropylene, PVA, and carbon fibers. Materials and Structures. − 2006. − Vol.40, No.3. − Pp.289–300. DOI:https://doi.org/10.1617/s11527-006-9106-z.

27. Kayali O., Haque M.N., Zhu B. Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research. − 1999. − Vol. 29. – Pp.1835–1840.

28. Kim S. B., Yi N. H., Kim H. Y., Kim J.-H. J., & Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites. − 2010. − Vol.32, No.3. − Pp.232–240. DOI:https://doi.org/10.1016/j.cemconcomp.2009.11.002.

29. Sabaa, B., Ravindrarajah, R.S. Engineering properties of lightweight concrete containing crushed expanded polystyrene waste. Materials Research Society, 1997 Fall Meet-ing. Symposium MM: Advances in Materials for Cementitious Composites. December 1-3, 1997, Boston, USA.

30. Wang, R., & Meyer, C. Performance of cement mortar made with recycled high impact polystyrene. Cement and Concrete Composites. − 2012. − Vol.34, No.9. − Pp.975–981. DOIhttps://doi.org/10.1016/j.cemconcomp.2012.06.014.

31. Kan A., Demirboǧa R. A novel material for lightweight concrete production. Cement and Concrete Composites. − 2009. − Vol. 31, No.7. − Pp. 489–495. DOIhttps://doi.org/10.1016/j.cemconcomp.2009.05.002.

32. Yesilata B., Isiker Y., Turgut P. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials. − 2009. − Vol. 23, No.5. − Pp.1878–1882. DOI:https://doi.org/10.1016/j.conbuildmat.2008.09.014.

33. Albano C., Camacho N., Hernández M., Matheus A., & Gutiérrez A. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management. − 2009. − Vol. 29, No.10. − Pp. 2707–2716. DOIhttps://doi.org/10.1016/j.wasman.2009.05.007.

34. Chalov K.V., Lugovoy Yu.V., Kosivcov Yu.Yu. Issledovanie kinetiki termodestrukcii sshitogo polietilena // Byulleten' nauki i praktiki. − 2019. − T. 5, № 12. − C.37–46.

35. Thomas J., Thomas M.E., Thomas S. Crosslinked Polyethylene: State-of-the-Art and New Challenges. Cross-linkable Polyethylene: Manufacture, Properties, Recycling, and Applications. − 2021. − Pp.1–15. DOI:https://doi.org/10.1007/978-981-16-0514-7_1.

36. Chandran N., Sivadas A., Anuja E., Baby D., Ramdas R. XLPE: Crosslinking Techniques and Recycling Process. Cross-linkable Polyethylene: Manufacture, Properties, Re-cycling, and Applications. − 2021. − Pp. 167–188. DOI:https://doi.org/10.1007/978-981-16-0514-7_7.

37. Zéhil G.-Ph., Assaadb J.J. Feasibility of concrete mixtures containing cross-linked polyethylene waste materials. Construction and Building Materials. − 2019. − Vol. 226. DOI:https://doi.org/10.1016/j.conbuildmat.2019.07.285.

38. Shamsaei M., Aghayan I., Kazemi K.A. Experimental investigation of using cross-linked polyethylene waste as aggregate in roller compacted concrete pavement. Journal of Cleaner Production. − 2017. − Vol.165. − Pp. 290–297. DOI:https://doi.org/10.1016/j.jclepro.2017.07.109.

39. Dweik H.S., Ziara M.M., Hadidoun M.S. Enhancing concrete strength and thermal insulation using thermoset plastic waste. International Journal of Polymeric Materials and Polymeric Biomaterials. − 2008. − Vol. 57, № 7. − Pp.635–656. DOI:https://doi.org/10.1080/00914030701551089.

40. Karimov I.Sh. Prochnost' scepleniya cementnogo kamnya s zapolnitelyami v betone i faktory vliyayuschie na nee // Tehnologii betonov. − 2013. − №4. − S.28-31.

41. Nesvetaev G.V., Vu L.K. Model' dlya ocenki scepleniya cementnogo kamnya s zapolnitelem po velichine predela prochnosti betona pri osevom rastyazhenii // Internen-zhurnal NAUKOVEDENIE. − 2017. − T. 9, № 3.

42. Struktura i svoystva cementnyh betonov // A.E. Sheykin, Yu.V. Chehovskiy, M.I. Brusser. - M.: Stroyizdat, 1979. - 344 s.

43. Tehnologiya zapolniteley betona // S.M. Ickovich, L.D. Chumakov, Yu.M. Bazhenov. – M.: Vyssh. shk., 1991. – 272 s.

Login or Create
* Forgot password?