UDK 666.91 Производство гипса, ангидрита и изделий из них
GRNTI 61.35 Технология производства силикатных и тугоплавких неметаллических материалов
OKSO 18.06.01 Химическая технология
BBK 303 Сырье. Материалы. Материаловедение
TBK 6364 Отраслевая и прикладная экология
This work is devoted to the study of self-reinforced gypsum stone with increased strength properties and low creep due to the reinforcement of the gypsum matrix with filiform ettringite crystals. However, with this method of self-reinforcement, difficulties may arise in providing a sufficient volume of an alkaline medium when using a saturated solution of calcium hydroxide obtained by slaking air calcium lime. The method is simplified by replacing saturated lime solutions with powder mixtures of fly ash captured by electrostatic precipitator systems during combustion of coals from the Kansk-Achinsk brown coal basin at thermal power plants. Gypsum composite based on fly ash has increased strength, which confirms the possibility of effective use of fly ash from the combustion of brown coal in building gypsum composites used to create structural elements of buildings. According to the study of the results of microscopic imaging of the resulting self-reinforced structure, the forming gypsum matrix becomes denser with differently directed crystals and fly ash microspheres included in the work. Utilization of fly ash waste in the composition of reinforced composites allows not only to simplify the method of self-reinforcement, reduce costs, but also to solve the problem of recycling chemically active ash.
gypsum compositions, fly ash, waste from thermal power plants, structure, hardening, reinforcement
1. Korotkih D.N. Dispersnoe armirovanie struktury betona pri mnogourovnevom treschinoobrazovanii // Stroitel'nye materialy. – 2011. № 3. – S. 96-99.
2. Emerging waste-to-wealth applications of fly ash for environmental remediation: A review / T.N. Hong-Ha [et al.] // Environmental Research. – 2023. No. 227. – Rr. 115800. DOI:https://doi.org/10.1016/j.envres.2023.115800
3. Ogorodnikova E.N., Nikolaeva S.K. Litogeneticheskie osobennosti tehnogennyh otlozheniy zoloshlakootvalov // Byulleten' Komissii po izucheniyu chetvertichnogo perioda. – 2005. № 66. – S. 65-74.
4. Larionova N.A. Vliyanie himiko-mineral'nogo so-stava aktivnyh zol na processy tverdeniya zol'nyh i zologruntovyh smesey // Inzhenernaya geologiya. – 2018. T. XIII, № 3. – S. 74-85. DOI:https://doi.org/10.25296/1993-5056-2018-13-3-74-85.
5. Ogorodnikova E.N., Baraboshkina T.A., Nikolaeva S.K. Osobennosti mineral'nogo sostava zoloshlako-otvalov – produktov tehnogeneza // Vestnik RUDN. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti. – 2011. № 3. – S. 20-24.
6. Vafaeva K.H., Shinkareva M. Overview of the world experience in using fly ash as a secondary resource and features of its application in the Russian Federation // AlfaBuild. – 2023. No.26. – Rr. 2604. DOI:https://doi.org/10.57728/ALF.26.4
7. Zayceva Yu.P. Povedenie himicheskih elementov pri szhiganii ugley, pri transportirovke i hranenii zoloshlakov (na primere Berezovskoy GRES) // Problemy geologii i osvoeniya nedr: trudy XIX Mezhdunarodnogo simpoziuma imeni akademika M. A. Usova studentov i molodyh uchenyh, posvyaschennogo 70-letnemu yubileyu Pobedy sovetskogo naroda nad fashistskoy Germaniey. – Tomsk: TPU, 2015. – S. 619-620.
8. Sithole T., Mashifana T., Mahlangu D., Tchadjié L. Effect of binary combination of waste gypsum and fly ash to produce building bricks // Sustainable Chemistry and Pharmacy. – 2023. No. 31. – Rr. 100913. DOI:https://doi.org/10.1016/j.scp.2022.100913
9. Panda L., Dash S. Characterization and utilization of coal fly ash: a review // Emerging Materials Research. – 2020. Vol. 9, Iss. 3. – Rr. 921-934. DOI:https://doi.org/10.1680/jemmr.18.00097
10. Usanova Y.K, Barabanshchikov Iu.G., Uhanov A.V., Kalachev A.I. Neutralization of high-calcium fly ash ex-pansion // Construction of Unique Buildings and Structures. – 2022. No. 103. – Rr. 10302. DOI:https://doi.org/10.4123/CUBS.103.2
11. Ufimcev V.M., Kapustin F.L. Klinkernye vyazhuschie s dobavkoy aktivirovannoy vysokoosnovnoy zoly TES // Suhie stroitel'nye smesi. – 2015. № 3. – S. 44-45.
12. Ghosh A., Subbarao C. Microstructural Development in Fly Ash Modified with Lime and Gypsum // Journal of Materials in Civil Engineering. – 2001. Vol. 13, Iss. 1. – Rr. 65-70. DOI:https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(65)
13. Puvvadi V.S., Moghal A.A.B. Role of Gypsum in the Strength Development of Fly Ashes with Lime // Journal of Materials in Civil Engineering. – 2010. Vol. 23, Iss. 2. – Rr. 197-206. DOI:https://doi.org/10.1061/(ASCE)MT.1943-5533.0000158
14. Drying shrinkage, strength and microstructure of alka-li-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive / H. Sakonwan [et al.] // Cement and Concrete Composites. – 2020. No. 114. – S. 103760. DOI:https://doi.org/10.1016/j.cemconcomp.2020.103760
15. Petropavlovskiy K.S. Samoarmirovannye gipsovye materialy s kompleksnym modifikatorom: dis. … kand. tehn. nauk: 05.23.05. M., 2020. 208 s.