UDK 666.9.046 Процессы и способы термической обработки: кальцинирование, дегидратация, сушка и т. д.
GRNTI 61.35 Технология производства силикатных и тугоплавких неметаллических материалов
OKSO 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий
BBK 303 Сырье. Материалы. Материаловедение
TBK 6364 Отраслевая и прикладная экология
The kinetics of mineral formation in the synthesis of sulfoaluminate clinker using industrial waste as raw materials has been studied. The use of industrial waste makes it possible to synthesize high-quality sulfoaluminate clinker and cement based on it. Various physico-chemical analysis methods have shown a change in the amount of calcium sulfoaluminate and mayenite formed during the firing of raw mitures at temperatures of 1250, 1300 and 1350 ° for 30, 60 and 90 minutes. A kinetic analysis of the mineral formation process was carried out using 12 kinetic equations, which made it possible to es-timate the reaction rate of clinker formation and optimize the synthesis process. The dependences between the rate of for-mation of clinker mineral phases and various parameters of the reaction mixture have been experimentally established. The results obtained can be used to improve the technological processes for the production of sulfoaluminate clinkers based on waste and reduce energy consumption for this process.
sulfoaluminate clinker, energy efficiency, X-ray phase analysis, mineral formation
1. Maddalena, R. Can Portland cement be replaced by low carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements/R. Maddalena, J.J Roberts, A. Hamilton//J Clean Prod 2018. Vol.186. p.933-42.
2. Liu, Z. Experimental and numerical investigations on the inhibition of freeze–thaw damage of cement-based materials by a methyl laurate/diatomite microcapsule phase change material/Z. Liu., J. Jiang., X.Jin.,Y. Wang., Y. Zhang // J Energy Storage 2023. Vol.68. 107665.
3. Schneider, M., Sustainable cement production present and future/ M. Schneeider, M. Romer., M. Tschudin., H. Bolio// Cement Concr Res 2011. Vol. 41. № .7. p. 642-50.
4. Taylor, H.F.W. Cement Chemistry. Published by Thomas Telford Publishing, Thomas Telford Services Ltd, 1 Heron Quay, London E144JD. 1997. 457 r.
5. Potapova, E.N. Tehnologicheskie, tehnicheskie i organizaci-onno-upravlencheskie resheniya dlya ustoychivogo razvitiya i dekarbonizacii cementnoy otrasli /E.N. Potapova., T.V. Guseva., T.O. Tolstyh, Bubnov A.G//Tehnika i tehnologiya silikatov. 2023. T. 30, № 2.S.104-115. https://tsilicates.ru/2023_tts2.
6. Gartner, E. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete/E. Gartner., H. Hirao// Cement and Concrete Re-search. 2015. Vol.78. Pp.126-142. https://doi.org/10.1016/j.cemconres.2015.04.012.
7. Leitan, F. A look ahead: what will the cement plant look like in the near future/ F. Leitan// Vzglyad vpered: kakim budet tsementnyy zavod v blizhayshem budushchem. Cement and its application. Tsement i yego primeneniye. 2020. 1. pp.124-128.
8. Concrete is more than a material. It’s about life/ Global Cement and Concrete Association (GCCA) of 03.05.2021.
9. Turner, LK. Carbon dioxide equivalent (CO2-e) emissions. a comparison between geopolymer and OPC cement concrete/L.K. Turner, FG Collins // Construct Build Mater. 2013. Vol. 43. p. 125–30.
10. Hienola, A. The role of anthropogenic aerosol emission reduction in achieving the Paris Agreement’s objective/A. Hienola A., J. Pietikainen, D.O. Donnell, Partanen AI, H. Korhonen, A. Laaksonen// Vienna, Austria. 2017.
11. Winnefeld, F. Using gypsum to control hydration kinetics of CSA cements /F, Winnefeld., L.H., Martin L.H., C.J Müller., B. Lothenbach // Construct. Build. Mater. 2017. 155. Pp.154-163. https://doi.org/10.1016/j.conbuildmat.2017.07.217.
12. Gartner, E. Low-CO2 cements based on calcium sulfoalumi-nates/ E. Gartner, K .Quillin // Sustainability in the Cement and Concrete Industry, Norwegian Cement Association, 2007. Vol. 16. Pp. 95-105.
13. Tao, Y. Recent progress and technical challenges in using calcium sulfoaluminate (CSA) cement /.Y. Tao., A.V.Rahul.,M.K Mohan.,G.D Schutter.,K.V Tittelboom//.Cement Concr. Compos. 2022. Article 104908. DOI:https://doi.org/10.1016/j.cemconcomp.2022.104908.
14. Nikitina, M.A. Ocenochnaya harakteristika kachestva kal'cievo-alyuminatnogo cementa s ispol'zovaniem tehnogennyh materialov/ M.A. Nikitina., I.N Borisov., T.I Timoshenko// ALITINFORM: Cement. Beton. Suhie smesi. 2020. 4(61). S. 16-25.
15. Li, H. Microwave sintering of sulphoaluminate cement with utility wastes/H. Li, DK Agrawal, J. Cheng, MR. Silsbee. // Cement Concr. Res. 2001. p. 311257 -61.
16. Więckowski, A. Automating CSA cement-based reinforced monolithic ceiling construction, Autom|/ A. Więckowski // ConStruct. 2020. Vol. 111. 103051. https://doi.org/10.1016/j. autcon.2019.103051.
17. Pooni, J. Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils/ J. Pooni, D. Robert, F. Giustozzi, S. Setunge, Y.M. Xie, J. Xia// Construct. Build. Mater.2020. Vol.260. 120433, https://doi.org/10.1016/j. conbuildmat.2020.120433.
18. Mohan, M.K. Early age hydration, rheology and pumping char-acteristics of CSA cement-based 3D printable concrete, / M.K. Mo-han., A.V. Rahul., G. De Schutter., K. Van Tittelboom // Construct. Build. Mater. 2021. Vol.275. 122136, https://doi.org/10.1016/ j. conbuildmat.2020.122136.
19. Sirtoli, D. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement/ D. Sirtoli., M. Wyrzykow-ski., P. Riva., S. Tortelli., M. Marchi., P. Lura// Cem. Concr. Comps. 2019. Vol. 78. p. 61–73. https://doi.org/10.1016/j. cemconcomp.2019.02.006.
20. Valenti, G. High-temperature synthesis of calcium sulphoaluminate from phosphogypsum, G. Valenti, L. Santoro, R. Garofano//Thermochim. Acta 1987. Vol 113. P. 269–275.
21. Ma, S. Alite-ye'elimite cement: synthesis and mineralogical analysis// S. Ma., R. Snellings., X. Li., X. Shen., K.L. Scrivener // Cem. Concr. Res. 2013. Vol. 45. P. 15–20.
22. Xuerun, Li. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide// Li Xuerun., Yu Zhang., Shen Xiaodong., Wang Qianqian., Pan Zhigang., Cement and Concrete Research 2014. Vol.55. p. 79-87. https://doi.org/10.1016/j.cemconres.2013.10.006.
23. Min Hein Htet. Poluchenie sul'foalyuminatnogo cementa i issledovanie ego svoystv/ Min Hein Htet, E.N. Potapova // Mezhdunarodnoe analiticheskoe obrazovanie ALITinform: Cement. Beton. Suhie stroitel'nye smesi. 2023. T.3. № 72.S. 2-9.
24. Shen, X. High-strength Portland Cement Clinker and Preparation Method/ X. Shen, X. Li, J. Xu,W. Xu, Y. Zhang, Y. Zhou//Nanjing University of Technology, Peop. Rep. China, 2013, p. 10.
25. Mamykin, P. S. Kinetika obrazovaniya silikatov v sisteme CaO – SiO2/ P. S. Mamykin, S. G. Zlatkin // Zhurnal fizicheskoy himii. 1937. T.9. №3. S. 393 – 406.
26. Potapova, E. N. Intensifikaciya processa alitoobrazovaniya v oksidno-solevyh rasplavah [Tekst]: dis …kand. tehn. nauk: 05.17.11 /E. N. Potapova. M., 1983. 271 s.
27. Min Hein Htet, Kinetika mineraloobrazovaniya pri sinteze sul'foalyuminatnogo klinkera/ Min Hein Htet, E. N. Potapova, I.Yu Burlov// Uspehi v himii i himicheskoy tehnolo-gii.2022., T. 36., № 3(252)., S. 106-108.