NANOTECHNOLOGY IN THE PRODUCTION OF BUILDING MATERIALS: A THEORETICAL STUDY
Abstract and keywords
Abstract (English):
The modern stage of development of the construction industry begins to apply nanotechnology. Nanotechnology makes it possible to create a wide range of construction materials. This is done by controlling both the external and the internal structure of materials. The use of nanotechnology leads to the creation of new composite materials with truly unique characteristics. Developments of scientists in the field of creation of building materials based on nanotechnology are less applied on an industrial scale than in other spheres of national economy. In this study nanotechnology is considered as a set of techniques, chemical and physicochemical methods aimed at synthesizing in the volume or on the surface of the material structures having at least one direction of nanoscale. The methodological basis of the work is the analysis of literature data on the use of nanotechnology in building materials science. The result of the study was the identification of the synergistic effect of nano- and ultradisperse particles on the production of new building materials using nanotechnology. Obtaining high-quality nanostructured material containing nano- and ultradisperse particles of different nature is associated with significant difficulties. Their introduction in the form of powder into cement or other binding matrix is a very complicated process. Nano- and ultradisperse particles are prone to ag-glomeration. To achieve uniformity of their distribution in the volume of material is a difficult task, which is the subject of many studies. In the process of analyzing the literature data, the authors came to the conclusion that it is necessary to apply various technological methods for uniform distribution of nanoparticles in the volume of the material. This approach will allow to increase physical-mechanical, organoleptic and other properties of building materials.

Keywords:
nano- and ultradisperse particles, nanotechnology, carbon nanotubes, synergistic effect, composite materials, properties of building materials
References

1. Balaguru, P.; Chong, K. Nanotechnology and Concrete: Research Opportunities; ACI Special Publication; American Concrete Institute: Farmington Hills, MI, USA, 2008; pp. 15–28. [Google Scholar]

2. Moses Karakouzian, Visar Farhangi, Marzieh Ramezani Farani, Alireza Joshaghani,Mehdi Zadehmohamad and Mohammad Ahmadzadeh Mechanical Characteristics of Cement Paste in the Presence of Carbon Nanotubes and Silica Oxide Nanoparticles: An Experimental Study // Materials 2021, 14(6), 1347; https://doi.org/10.3390/ma14061347

3. Korolev, E.V. Nekotorye polozheniya nanotehnologii v stroitel'nom materialovedenii / E.V. Korolev, A.N. Grishina // Sb. trudov mezhdunarodnoy nauchnoy konferencii «Integraciya, partnerstvo i innovacii v stroitel'noy nauke i obrazovaniyu – M.: MGSU, 2011. – T.2. – S. 94 – 102.

4. Rodionov R.B. Nanotehnologii – innovacionnoe napravlenie razvitiya v stroitel'noy industrii / R.B. Rodionov // Stroitel'nye materialy, oborudovanie, tehnologii HHI veka. – 2006. – №9. – S. 62 – 64.

5. Falikman, V.R. Nanomaterialy i nanotehnologii v stroitel'stve: segodnya i zavtra / V.R. Falikman // Stroitel'nye materialy, oborudovanie, tehnologii HHI veka. – 2009. -№1. – S. 64 – 68.

6. Gong, K.; Pan, Z.; Korayem, A.H.; Qiu, L.; Li, D.; Collins, F.; Wang, C.M.; Duan, W.H. Reinforcing effects of graphene oxide on Portland cement paste. J. Mater. Civ. Eng. 2015, 27, 1–6. [Google Scholar] [CrossRef]

7. Muzenski, S.; Flores-Vivian, I.; Farahi, B.; Sobolev, K. Towards ultrahigh performance concrete produced with aluminum oxide nanofibers and reduced quantities of silica fume. Nanomaterials 2020, 10, 2291. [Google Scholar] [CrossRef]

8. Tahmouresi, B.; Nemati, P.; Asadi, M.A.; Saradar, A.; Mohtasham Moein, M. Mechanical strength and microstructure of engineered cementitious composites: A new configuration for direct tensile strength, experimental and numerical analysis. Constr. Build. Mater. 2021, 269, 121361. [Google Scholar] [CrossRef]

9. Satvati, S.; Cetin, B.; Ashlock, J.C.; Ceylan, H.; Rutherford, C. Binding Capacity of Quarry Fines for Granular Aggregates. In Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 457–466. [Google Scholar] [CrossRef]

10. Ryzhonkov, D.I. Nanomaterialy / D.I. Ryzhonkov, V.V. Levina, E.L. Dzidziguri. – M.: BINOM. Laboratoriya znaniy, 2013. – 365 s.

11. Gubin, S.P. Himiya i tehnologiya nanochastic i materi-alov na ih osnove / S.P. Gubin. – M.: izd-vo MITHT im. M.V. Lomonosova, 2008. – Ch.1: Nanochasticy – «syr'e» dlya nanotehnologiy. Obschie svedeniya o nanochasticah. – 41 s.

12. Ammon, L.Yu. Modelirovanie processa rosta nanochastic metodom ogranichennoy diffuziey agregacii [elektronnyy resurs] / L.Yu. Ammon // Mezhdunarodnyy forum po nanotehno-logiyam Rusnanotech. – M., 2009. – 1 elektron. opt. disk (SD-ROM).

13. Gusev, A.I. Nanomaterialy, nanostruktury, nanotehnologii / A.I. Gusev. – M.: FIZMATLIT, 2009. – 416 s.

14. Petrova, L.G. Metody polucheniya i issledovaniya nano-strukturnyh materialov / L.G. Petrova, A.A. Brezhnev // Sb. trudov «Sovremennye metody polucheniya i issledovaniya nano-strukturnyh materialov i pokrytiy. – MADI, 2009. – S. 3 – 19.

15. Sergeev, G.B. Nanohimiya / G.B. Sergeev. M.: Izd-vo MGU, 2007. – 336 s.

16. Sergeev G.B. Razmernye effekty v nanohimii / G.B. Sergeev // Ros. him. zhurnal. – 2002. - №5. - T. HLVI. – S. 22 – 29.

17. Fizicheskiy enciklopedicheskiy slovar'. – M.: Sov. enciklopediya, 1984. – 594 s.

18. Senatov, F.S. Poluchenie nanoporoshkov oksidov me-tallov iz soley metodom mehanohimicheskogo sinteza / F.S. Senatov, D.V. Kuznecov, S.D. Kaloshkin, V.V. Cherdyshev [elek-tronnyy resurs] // Mezhdunarodnyy forum po nanotehnologiyam Rusnanotech. - M., 2009 – 1 elektron. opt. disk (SD-ROM).

19. Borilo, L.N. Sintez nanostrukturnyh tonkih plenok na osnove dvoynyh oksidnyh sistem [elektronnyy resurs] /L.N. Borilo // Mezhdunarodnyy forum po nanotehnologiyam Rusnanotech. – M., 2009. – 1 elektron. opt. disk (SD-ROM).

20. Gavrilova, N.N. Sintez i kolloidno-himicheskie svoystva gidrozoley SeO2 – ZrO2: Avtoreferat diss. na soisk. uch. st. kandidata him. nauk / N.N. Gavrilova. – M., 2009. - 17 s.

21. Hakimova, E.Sh. Cementnye betony s nanodobavkami sinteticheskogo ceolita / E.Sh. Hakimova // Vestnik YuUrGU. - 2008. - №25. - C.16-21.

22. Shabanova, N.A. Osnovy zol'-gel' tehnologii nano-dispersnogo kremnezema / N.A. Shabanova, P.D. Sarkisov. – M.: IKC «Akademkniga», 2004. – 208 s.

23. Potapov, V.V. Proizvodstvo nanodispersnyh poroshkov kremnezema s primeneniem membran i kriohimicheskoy vakuumnoy sublimacii / V.V. Potapov, D.S. Gorev // Vestnik KRAUNC. Fiz.-mat. nauki. – 2012. - № 1(4). – S. 51 – 60.

24. Lisichkin, G.V. Himiya privityh poverhnostnyh soedineniy / G.V., Lisichkin, A.A. Fadeev, A.A. Serdan i dr. – M.: Fizmatlit, 2003. – 589 s.

25. Starovoytova, I.A., Gibridnye organo-neorganicheskie svyazuyuschie, poluchaemye po zol'-gel' tehnologii, i ih prakticheskoe ispol'zovanie v kompozicionnyh materialah / I.A. Starovoytova, V.G. Hozin, L.A. Abdrahmanova, G.G. Ushakova // Izvestiya KazGASU. - 2010. - № 2 (14). - S.273 – 277.

26. Komohov, P.G. Zol'-gel' kak koncepciya nanotehnologii cementnogo kompozita, struktura sistemy i puti ee realizacii [elektronnyy resurs] / P.G. Komohov // Materialy nauch-noprakticheskoy konferencii studencheskogo kluba «Al'-ternativa» «Obrazovanie, nauka, promyshlennost': vzglyad v buduschee» // Rezhim dostupa: www.techros.ru/text/2615 .

27. Evtushenko, E.I. Aktivacionnye processy v tehnologii stroitel'nyh materialov / E.I. Evtushenko. – Belgorod, 2003. – 209 s.

28. Solov'eva, V.Ya., Stepanova I.V. Razrabotka vysoko-prochnogo betona povyshennoy treschinostoykosti / V.Ya. Solov'eva, I.V. Stepanova // Izvestiya Peterburgskogo universiteta putey soobscheniy. - Spb., 2004. - V. 1. – S. 31-34.

29. Scherbina, M. Zol'-gel' «Zalivnoe» dlya stroiteley [elektronnyy resurs] / M. Scherbina // Rossiyskie nanotehnologii. - 2010. - T.5. - №1-2. - S.21. Rezhim dostupa: www.nanorf.ru.

30. Korolev, A.S. Polimerizaciya nanodobavkami gidratnoy struktury cementnogo kamnya v kompozitah / A.S. Korolev, E.Sh. Hakimova, D.V. Makridin, E.A. Voloshin // Cement i ego primenenie. – 2007. - № 5. – S. 82 – 84.

31. Kozlova, I. V. Varianty primeneniya ceolitov v proizvodstve stroitel'nyh materialov / I. V. Kozlova, M. V. Si-notova // Tehnika i tehnologiya silikatov. – 2023. – T. 30, № 2. – S. 116-128. – EDN ABUURF.

32. Zhdanov, S.P. Sinteticheskie ceolity / S.P. Zhdanov. - M.: Himiya, 1981. - 264 s

33. Kalashnikov, V.I. Nanotehnologiya gidrofobizacii mineral'nyh poroshkov stearatami metallov / V.I. Kalashni-kov, M.N. Moroz, V.A. Hudyakov // Stroitel'nye materialy. – 2008. - № 7. – 45 – 47.

34. Joshaghani, A. Evaluating the effects of titanium dioxide (TiO2) and carbon-nanofibers (CNF) as cement partial replacement on concrete properties. MOJ Civ. Eng. 2018, 4, 00094. [Google Scholar] [CrossRef]

35. Issledovanie fiziko-mehanicheskih i fotokataliticheskih svoystv cementnyh kompozitov, modificirovannyh promyshlennym dioksidom titana / S. V. Samchenko, I. V. Koz-lova, A. V. Korshunov [i dr.] // Tehnika i tehnologiya silikatov. – 2023. – T. 30, № 2. – S. 152-161. – EDN LFEMUW.

36. Grebenyuk A.A. Sostav, struktura i svoystva gidratirovannogo belogo portlandcementa s dioksidom titana / Grebenyuk A.A., Eroshenko T.S., Borisov I.N., Vagin S.A. // Tehnika i tehnologiya silikatov. – 2024. – T. 31, № 1. – S. 77-87.

37. Lysov, D.V. Issledovanie nanoporoshkov oksidov metallov, poluchennyh metodom piroliza ul'trazvukovyh aero-zoley [elektronnyy resurs] / D.V. Lysov, A.G. Yudin, D.S. Mu-ratov // Mezhdunarodnyy forum po nanotehnologiyam Rusnanotech. – M., 2009. – 1 elektron. opt. disk (SD-ROM).

38. Anciferov, V.N. Poluchenie, struktura i svoystva nanoporoshka nikelya i materialov s ego ispol'zovaniem / V.N. Anciferov, S.A. Oglezneva, V.V. Shteynikova i dr. // Nanotehnologii i nanomaterialy Permskogo kraya: sbornik statey / Pod obsch. red. V.N. Anciferova. – Perm': Permskiy CNTI, 2009. – S 21 – 26.

39. Zaharov, Yu.A. Izuchenie sinteza nanorazmernyh tver-dyh rastvorov FeNi [elektronnyy resurs] / Yu.A. Zaharov, A.N. Popova, V.M. Pugachev // Mezhdunarodnyy forum po nanotehno-logiyam Rusnanotech. – M., 2009. – 1 elektron. opt. disk (SD-ROM).

40. Varianty sinteza fotokataliticheski aktivnoy dobavki dlya cementnyh sistem / I. V. Kozlova, O. V. Zemskova, S. V. Samchenko, M. O. Dudareva // Tehnika i tehnologiya silikatov. – 2023. – T. 30, № 3. – S. 206-216. – EDN HJAAJE.

41. Synthesis and Evaluation of Properties of an Additive Based on Bismuth Titanates for Cement Systems / S. V. Samchenko, I. V. Kozlova, A. V. Korshunov [et al.] // Materials. – 2023. – Vol. 16, No. 18. – P. 6262. – DOIhttps://doi.org/10.3390/ma16186262. – EDN RU-WOWH.

42. Pustovalov, A.V. Issledovanie usloviy formirovaniya nanovolokon pri vzaimodeystvii alyuminievyh poroshkov s vodoy / A.V. Pustovalov [elektronnyy resurs] // Mezhdunarodnyy forum po nanotehnologiyam Rusnanotech – M.,2009 – 1 elektron. opt. disk. (SD-ROM)

43. Samchenko S.V. Osobennosti povtornogo ispol'zovaniya cementnyh suspenziy pri realizacii tehnologii reciklinga betonnyh smesey / Samchenko S.V., Egorov E.S., Abramov M.A. // Vestnik MGSU. – 2021. – T. 16, №12, S. 1573-1581

44. Samchenko, S.V., Abramov, M.A., Egorov, E.S. Proper-ties of Concrete Modified by Ultrafine Cement Admixture // IOP Conf. Series: Materials Science and Engineering. – 2021. – Vol. 1079, 032078 doihttps://doi.org/10.1088/1757-899X/1079/3/032078

45. Increasing the Hydration Activity of Tricalcium Silicate by Adding Microdispersed Ettringite as a Nucleating Agent / Yu. R. Krivoborodov, S. V. Samchenko, A. V. Korshunov [et al.] // Materi-als. – 2023. – Vol. 16, No. 22. – P. 7078. – DOIhttps://doi.org/10.3390/ma16227078. – EDN TQJBDC.

46. Falikman, V.R. Nanomaterialy i nanotehnologii v sovremennyh betonah / V.R. Falikman // Mezhdunarodnoe analiticheskoe obozrenie Cement. Beton. Suhie smesi. – SPb.: AlitInform, 2011. - № 5 -6 (22). – S. 34 – 48.

47. Salimi, J.; Ramezanianpour, A.M.; Moradi, M.J. Studying the effect of low reactivity metakaolin on free and restrained shrink-age of high performance concrete. J. Build. Eng. 2020, 28, 101053. [Google Scholar] [CrossRef]

48. Shahmansouri, A.A.; Akbarzadeh Bengar, H.; AzariJafari, H. Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment. Constr. Build. Mater. 2021, 268, 121136. [Google Scholar] [CrossRef]

49. Samchenko, S. V. Stabilization of carbon nanotubes with superplasticizers based on polycarboxylate resin ethers / S. V. Sam-chenko, O. V. Zemskova, I. V. Kozlova // Russian Journal of Ap-plied Chemistry. – 2014. – Vol. 87, No. 12. – P. 1872-1876. – DOIhttps://doi.org/10.1134/S1070427214120131. – EDN UGGDLX.

50. Wang, Q.; Wang, J.; Lu, C.X.; Liu, B.W.; Zhang, K.; Li, C.Z. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. Xinxing Tan Cailiao/New Carbon Mater. 2015, 30, 349–356. [Google Scholar] [CrossRef]

51. Mohammadyan-Yasouj, S.E.; Ghaderi, A. Experimental investigation of waste glass powder, basalt fibre, and carbon nano-tube on the mechanical properties of concrete. Constr. Build. Mater. 2020, 252, 119115. [Google Scholar] [CrossRef]

52. Danula Udumulla, Thusitha Ginigaddara, Thushara Jaya-singhe, Priyan Mendis and Shanaka Baduge Effect of Graphene Oxide Nanomaterials on the Durability of Concrete: A Review on Mechanisms, Provisions, Challenges, and Future Prospects // Mate-rials 2024, 17(10), 2411; https://doi.org/10.3390/ma17102411

53. MacLeod, A.J.N.; Fehervari, A.; Gates, W.P.; Garcez, E.O.; Aldridge, L.P.; Collins, F. Enhancing fresh properties and strength of concrete with a pre-dispersed carbon nanotube liquid admixture. Constr. Build. Mater. 2020, 247, 118524. [Google Scholar] [CrossRef]

54. Renata Boris, Iwona Wilińska, Barbara Pacewska and Valentin Antonovič Investigations of the Influence of Nano-Admixtures on Early Hydration and Selected Properties of Calcium Aluminate Cement Paste // Materials 2022, 15(14), 4958; https://doi.org/10.3390/ma15144958

55. Lyashenko D. A., Perfilov V. A. Nanomodificirovannaya cementnaya kompoziciya // Vestnik MGSU 2024, 19, doi:https://doi.org/10.22227/1997-0935.2024.7.1116-1124

56. Gipsovye materialy, modificirovannye kompleksnoy dobavkoy na osnove nanosiliki / M. D. Batova, N. S. Zhuko-va, A. F. Gordina [i dr.] // Stroitel'nye materialy. – 2022. – № 4. – S. 64-71. – DOIhttps://doi.org/10.31659/0585-430X-2022-801-4-64-71. – EDN UNVXNB.

57. Vliyanie uglerodsoderzhaschego modifikatora na struk-turu i svoystva ftorangidritovogo vyazhuschego / A. N. Gumenyuk, I. S. Polyanskih, A. F. Gordina [i dr.] // Izvestiya vysshih uchebnyh zavedeniy. Stroitel'stvo. – 2022. – № 2(758). – S. 16-30. – DOIhttps://doi.org/10.32683/0536-1052-2022-758-2-16-30. – EDN LMFMNS.

58. Knahovskiy, V.V. Primenenie nanostrukturirovannoy vody dlya povysheniya prochnosti betona / V.V. Knahovskiy, V.B. Stecyk, K.N. Bogachev i dr. // Tehnologiya betonov. – 2008. - № 9. – S. 72 – 75.

59. Puharenko Yu.V. Nanostrukturirovanie vody zatvore-niya kak sposob povysheniya effektivnosti plastifikatorov betonnyh smesey / Yu.V. Puharenko, V.A. Nikitin, D.G. Letenko // Stroitel'nye materialy. – 2006. - №8. - S.11 – 13.

60. Taewan Kim, Jae Hong Kim and Yubin Jun Properties of Alkali-Activated Slag Paste Using New Colloidal Nano-Silica Mix-ing Method // Materials 2019, 12(9), 1571; https://doi.org/10.3390/ma12091571

61. Vliyanie sposobov aktivacii na strukturno-tehnologicheskie harakteristiki nanomodificirovannyh cementnyh kompoziciy / N. O. Kopanica, O. V. Dem'yanenko, A. A. Kulikova [i dr.] // Nanotehnologii v stroitel'stve: nauchnyy internet-zhurnal. – 2022. – T. 14, № 6. – S. 481-492. – DOIhttps://doi.org/10.15828/2075-8545-2022-14-6-481-492. – EDN PFYSQZ.

62. Nanomodification of Non-Autoclaved Foam Concrete / I. A. Prischepa, Y. S. Sarkisov, N. P. Gorlenko [et al.] // Russian Physics Journal. – 2023. – Vol. 66, No. 2. – P. 205-212. – DOIhttps://doi.org/10.1007/s11182-023-02927-y. – EDN MJNEHG.

63. Kozlova, I. Physico-Chemical Substantiation of Obtaining an Effective Cement Composite with Ultrafine GGBS Admixture / I. Kozlova, S. Samchenko, O. Zemskova // Buildings. – 2023. – Vol. 13, No. 4. – P. 925. – DOIhttps://doi.org/10.3390/buildings13040925. – EDN SAIXTM.

64. Korolev, E.V. Parametry ul'trazvuka dlya gomogenizacii dispersnyh sistem s nanorazmernymi modifikatorami / E.V. Korolev, M.I. Kuvshinova – 2010. - № 9 – S. 85 – 88.

65. Korolev, E.V. Effektivnost' fizicheskih vozdeystviy dlya dispergirovaniya nanorazmernyh modifikatorov / E.V. Korolev, A.S. Inozemcev // Stroitel'nye materialy. – 2012. - № 1. – S. 1 – 4.

66. Gidrodinamicheskiy sposob dispergacii mnogosloynyh uglerodnyh nanotrubok pri modifikacii mineral'nyh vyazhuschih / I. A. Pudov, G. I. Yakovlev, A. A. Lushnikova, O. V. Izryadnova // Intellektual'nye sistemy v proizvodstve. – 2011. – № 1(17). – S. 285-293. – EDN NXVFVB.

67. Kozlova, I. V. Perspektivnaya dobavka na osnove si-stemy TiO2-Bi2O3 dlya cementnyh kompozitov / I. V. Kozlova, M. O. Dudareva // Stroitel'nye materialy. – 2023. – № 11. – S. 100-103. – DOIhttps://doi.org/10.31659/0585-430X-2023-819-11-100-103. – EDN OPOEZB.

68. Patent № 2820534 C1 Rossiyskaya Federaciya, MPK C09D 5/00, C01G 29/00, C01G 23/047. Sposob polucheniya kom-pozicii s protivogribkovymi svoystvami: № 2023115713: za-yavl. 15.06.2023: opubl. 05.06.2024 / M. O. Dudareva, I. V. Kozlova, O. V. Zemskova [i dr.]; zayavitel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego ob-razovaniya "Nacional'nyy issledovatel'skiy Moskovskiy gosudarstvennyy stroitel'nyy universitet". – EDN CJNSBV.

69. Zemskova, O., Erofeev, V., Samchenko, S., Kozlova, I., Dudareva, M., & Korshunov, A. (2024). Biocidal Properties of Gypsum Stone Modified with Reynoutria sachalinensis Raw Materials . BioResources, 19(4), 8912–8919. Retrieved from https://ojs.bioresources.com/index.php/BRJ/article/view/23792

70. Nanostrukturirovanie kompozitov v stroitel'nom materialovedenii / G. I. Yakovlev, G. N. Pervushin, I. S. Polyanskih [i dr.]; pod obschey redakciey G.I. Yakovleva. – Izhevsk: Izhevskiy gosudarstvennyy tehnicheskiy universitet imeni M.T. Kalashnikova, 2014. – 196 s. – ISBN 978-5-7526-0681-6. – EDN TJIZRL.

71. Larsen, O. A. Kriterii ocenki strukturno-tehnologicheskih harakteristik betona / O. A. Larsen, V. V. Voronin, S. V. Samchenko // Tehnika i tehnologiya silikatov. – 2023. – T. 30, № 2. – S. 129-143. – EDN QXSDZK.

72. Issledovanie svoystv tonkodispersnyh materialov dlya polucheniya samouplotnyayuschegosya betona / O. A. Larsen, A. A. Solodov, V. V. Narut' [i dr.] // Tehnika i tehnologiya silikatov. – 2022. – T. 29, № 4. – S. 359-368. – EDN HMVYMV.

73. Inozemcev, A. S. Vysokoprochnye legkie betony / A. S. Inozemcev, E. V. Korolev. – Sankt-Peterburg: Sankt-Peterburgskiy gosudarstvennyy arhitekturno-stroitel'nyy universitet, 2022. – 192 s. – ISBN 978-5-9227-1265-1. – EDN UCJRAZ.

74. Inozemcev, A. S. Polye mikrosfery – effektivnyy zapolnitel' dlya vysokoprochnyh legkih betonov / A. S. Inozemcev, E. V. Korolev // Promyshlennoe i grazhdanskoe stroitel'stvo. – 2013. – № 10. – S. 80-83. – EDN PPSLRX.

75. Inozemcev, A. S. Srednyaya plotnost' i poristost' vysokoprochnyh legkih betonov / A. S. Inozemcev // Inzhenerno-stroitel'nyy zhurnal. – 2014. – № 7(51). – S. 31-37. – DOIhttps://doi.org/10.5862/MCE.51.4. – EDN SYSMUH.

76. Serenko, A.F. Ocenka vliyaniya tehnologicheskih faktorov na strukturnye parametry nanourovnya i prochnost' cementnogo kamnya / A.F. Serenko, A.M. Haritonov // Izv. Vuzov. Stroitel'stvo. – 2008. - №6. – S. 27 – 34.

77. Bazhenov Yu.M. Nanomodificirovannye korrozionnostoykie sernye stroitel'nye materialy / Yu.M. Bazhenov, E.V. Korolev, I.Yu. Evstifeeva, O.G. Vasil'eva. – M.: Izd-vo RGAU-MSHA im. K.A. Timiryazeva, 2008. – 167 s.

78. Shashpan, Zh.A. Primenenie nanotehnologiy pri pro-izvodstve sernyh kompozicionnyh materialov / Zh.A. Shashpan // Stroitel'nye materialy, oborudovanie, tehnologii XXI veka. – 2009. - № 2. – S. 60 – 61.

Login or Create
* Forgot password?