UDK 691.33 Бетоны и искусственные камни на основе других неорганических вяжущих вместо цемента
GRNTI 67.09 Строительные материалы и изделия
OKSO 08.06.01 Техника и технологии строительства
BBK 383 Строительные материалы и изделия
TBK 5415 Строительные материалы и изделия. Производство стройматериалов
One of the main vectors of development in modern construction is the acceleration of the pace of construction produc-tion. The use of chemical additives is not always justified from a technical and economic point of view. Processing raw ma-terials in low-temperature non-equilibrium plasma is an environmentally safe, effective method that does not require com-plex modifications and re-adjustment of technological equipment. Modification of raw materials in NNTP leads to a reduc-tion in setting time, accelerated hardening of inorganic binders, as well as an increase in the performance characteristics of materials and products. In this work the effect of low-temperature plasma on the properties of high quality gypsum is investigated. Gypsum suspensions with gypsum concentration of 3 and 5% were subjected to the treatment, which were in-troduced into gypsum with mixing water. It has been proven that the use of plasma-modified gypsum suspensions acceler-ates the setting of gypsum paste by up to 35.5% and increases the flexural strength of gypsum stone to 10.5%, and compres-sion strength to 22%.
gypsum paste, gypsum stone, nonequilibrium low-temperature plasma (NLTP), plasma modification of gypsum suspension, strength, setting time
1. Pat. 187713 Rossiyskaya Federaciya, MPK H05H 1/24 (2006.01). Plazmohimicheskiy generator dlya ak-tivacii vodnyh dispersnyh suspenziy i suhih dis-persnyh materialov / Bruyako M.G., Belikov S.S., Ma-tyushin E.V.; zayavitel' i patentoobladatel' NIU MGSU - № 2018139191; zayavl. 07.11.2018; opubl.15.03.2019, Byul. №8.
2. Folimagina O.V. Razrabotka stroitel'nyh mate-rialov na osnove magnitomehanicheski aktivirovan-noy vodogipsovoy suspenzii: diss.kand. tehn. nauk: 05.23.05: zaschischena 23.12.2011/ Folimagina Ol'ga Vasil'evna. - Penza, 2011. – 164 s. – Bibliogr.: s.147-162. – 04201252006.
3. Karaseva Ya. A. Povyshenie effektivnosti cement-nyh dispersnyh sistem vodoy v metastabil'nom so-stoyanii: diss.kand. tehn. nauk: 05.03.05: zaschischena 17.12.2008/ Karaseva Yana Anatol'evna. - Penza, 2008. – 154 s.
4. Kozlova I.V. Opyt primeneniya nanorazmernyh cha-stic v proizvodstve stroitel'nyh materialov // Teh-nika i tehnologiya silikatov. 2021. T. 28. №3. S. 81 – 87.
5. Klassen V.I. Omagnichivanie vodnyh sistem. - M.: Himiya, 1982. 296 s.
6. Gorlenko N.P. Nizkoenergeticheskaya aktivaciya dispersnyh sistem: monografiya / N.P. Gorlenko, Yu.S. Sarkisov. – Tomsk: Izd-vo Tom. gos. arhit. stroit. un-ta, 2011. – 264 s.
7. Sobol' S. V. Fraktal'nye parametry vodnyh ob'-ektov [Tekst]: monografiya / S. V. Sobol'; Nizhegor. gos. arhitektur. - stro-it.un - t. – N. Novgorod: NNGASU, 2019. – 232 s. ISBN 978-5-528-00344-3.
8. Sarkisov Yu.S. Osobennosti struktury i svoystv vody v zhidkom agregatnom sostoyanii / Sarkisov Yu.S., Gorlenko N.P., Zubkova O.A., Sarkisov D.Yu. Tehnika i tehnologiya silikatov. – 2021. – T. 28, № 1. – S. 12-17.
9. Kolesnikov V.A., Yakushin R.V., Brodskiy V.A., Ba-busenko E.S., Chistolinov A.V. Issledovanie inakti-vacii boleznetvornyh mikroorganizmov v vode voz-deystviem nizkotemperaturnoy plazmy // Gigiena i sanitariya. - 2016. - T. 95, №6. - S. 588-592.
10. Pshenichnyy G.N. Etyudy otverdevaniya stroitel'-nogo gipsa Tehnika i tehnologiya silikatov. – 2021. – T. 28, № 1. – S. 2-6.
11. Korovyakov V.F. Sovremennye dostizheniya v obla-sti sozdaniya gipsovyh vyazhuschih // Sbornik nauchnyh trudov (k 50-letiyu instituta). M.: GUP «NIIMOS-STROY». – 2006. - 149 s.
12. Kalyadin A.Yu., Nalbandyan G.V., Solov'ev V.G., Bogdanova A.A., Ushkov V.A. Plazmennaya modifi-kaciya komponentov stroitel'nyh rastvorov - effek-tivnyy metod povysheniya ih ekspluatacionnyh svoystv // Vestnik MGSU. - 2019. - T. 14, № 5. - S.548-558.
13. Bruyako M.G., Shuvalova E.A., Zolotarev M.E., Hanmamedova E.N. Vliyanie plazmomodificirovan-noy fibry na svoystva stroitel'nyh kompozitov // Izvestiya vuzov. Investicii. Stroitel'stvo. Nedvi-zhimost'. - 2019. - T. 9, № 4. - S. 716-725.
14. Ibragimov R.A., Korolev E.V. Technical properties of activated gypsum / International Conference on Con-struction, Architecture and Techno-sphere Safety (IC-CATS 2018), Russian Federation (IOP Conference Series: Materials Science and Engineering). - 26–28 September 2018. - South Ural State University, 2018. Volume 451, DOI:https://doi.org/10.1088/1757-899X/451/1/012028.
15. Sazonova N.A., Skripnikova N.K. Using the low-temperature plasma in cement production / 12th In-ternational Conference on Gas Discharge Plasmas and Their Applications. Journal of Physics: Conference Series. – 2015. - V.652. DOIhttps://doi.org/10.1088/1742-6596/652/1/012063.
16. Nalbandyan G.V., Soloviev V.G., Ushkov V.A. Modi-fication of components of fine-grained concretes by low-temperature nonequilibrium plasma / Materials Today: Proceedings. - 2019. V.19, № 5. P. 1841-1844. DOIhttps://doi.org/10.1016/j.matpr.2019.07.024.
17. Moreau M., Orange N., Feuilloley M.G.J. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. – 2008. V. 26. P. 610–617. DOI:https://doi.org/10.1016/j.biotechadv.2008.08.001.
18. Milella A., Palumbo F. Cold plasma / Encyclopedia of Membranes. Drioli E., Giorno L., editors. Springer Berlin Heidelberg. - Berlin, Heidelberg, 2014. pp. 1–2.
19. Rossi F. Sterilization and decontamination of surfaces by plasma discharges / Sterilisation of Biomaterials and Medical Devices. Simmons A., editor. - 2012.
20. Snoeckx R., Bogaerts A. Plasma technology – a novel solution for CO2 conversion? / Chemical Society Review – 2017. – V. 46. P. 5805–5863. DOI:https://doi.org/10.1039/C6CS00066E.
21. Liao X., Cullen P.J., Muhammad A.I., Jiang Z., Ye X., Liu D., Ding T. Cold plasma–based hurdle interventions: new strategies for improving food safety/ Food Engineer-ing Reviews – 2020. – V.12. – P. 321–332. DOI:https://doi.org/10.1007/s12393-020-09222-3.
22. Adhikari B., Adhikari M., Ghimire B., Park G., Choi E.H. Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings / Science Reports. – 2019. - V.9. DOI:https://doi.org/10.1038/s41598-019-52646-z.
23. Thirumdas R., Kothakota A., Annapure U., Siliveru K., Blundell R., Gatt R., Valdramidis V.P. Plasma-activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture / Trends in Food Science and Technology. – 2018. – V. 77. – P. 21–31. DOI:https://doi.org/10.1016/j.tifs.2018.05.007.
24. Primenenie tleyuschego razryada v stroitel'noy i tekstil'noy promyshlennosti / S.V. Fedosov, B.N. Mel'nikov, M.V. Akulova, L.V. Sharnina. Ivanovo: IGHTU, IGASU, 2008. - 236 s.
25. Abdulin I.Sh., Nurullina G.N., Azanova A.A. Plazmennaya modifikaciya prirodnyh polimerov kak faktor povysheniya ekonomicheskoy effektivnosti otdelochnogo proizvodstva / Vestnik Kazanskogo teh-nologicheskogo universiteta. - 2014. - S. 167-168.
26. Azanova A.A., Abdullin I.Sh., Nurullina G.N., Dresvyannikov A.F. Trikotazhnye polotna, otde-lannye s ispol'zovaniem nizkotemperaturnoy plaz-my proizvodstva / Vestnik Kazanskogo tehnologiche-skogo universiteta. - 2014. - S. 61-62.
27. Serdobincev A.A., Venig S.B., Aleksandrov V.A., Mitin D.M., Veselov A.G., Kiryasova O.A., Elmanov V.I. Formirovanie modificirovannyh materialov v potokah nizkotemperaturnoy plazmy / Izvestiya Sa-ratovskogo universiteta. Novaya seriya. Seriya Fizika. - 2013. - T. 13, № 2. - S. 47-50.