employee
Moscow, Moscow, Russian Federation
Lipetsk, Lipetsk, Russian Federation
graduate student
Moscow, Moscow, Russian Federation
student
Moscow, Moscow, Russian Federation
UDC 691.33
CSCSTI 67.09
Russian Classification of Professions by Education 08.06.01
Russian Library and Bibliographic Classification 383
Russian Trade and Bibliographic Classification 5415
One of the main vectors of development in modern construction is the acceleration of the pace of construction produc-tion. The use of chemical additives is not always justified from a technical and economic point of view. Processing raw ma-terials in low-temperature non-equilibrium plasma is an environmentally safe, effective method that does not require com-plex modifications and re-adjustment of technological equipment. Modification of raw materials in NNTP leads to a reduc-tion in setting time, accelerated hardening of inorganic binders, as well as an increase in the performance characteristics of materials and products. In this work the effect of low-temperature plasma on the properties of high quality gypsum is investigated. Gypsum suspensions with gypsum concentration of 3 and 5% were subjected to the treatment, which were in-troduced into gypsum with mixing water. It has been proven that the use of plasma-modified gypsum suspensions acceler-ates the setting of gypsum paste by up to 35.5% and increases the flexural strength of gypsum stone to 10.5%, and compres-sion strength to 22%.
gypsum paste, gypsum stone, nonequilibrium low-temperature plasma (NLTP), plasma modification of gypsum suspension, strength, setting time
1. Pat. 187713 Rossiyskaya Federaciya, MPK H05H 1/24 (2006.01). Plazmohimicheskiy generator dlya ak-tivacii vodnyh dispersnyh suspenziy i suhih dis-persnyh materialov / Bruyako M.G., Belikov S.S., Ma-tyushin E.V.; zayavitel' i patentoobladatel' NIU MGSU - № 2018139191; zayavl. 07.11.2018; opubl.15.03.2019, Byul. №8.
2. Folimagina O.V. Razrabotka stroitel'nyh mate-rialov na osnove magnitomehanicheski aktivirovan-noy vodogipsovoy suspenzii: diss.kand. tehn. nauk: 05.23.05: zaschischena 23.12.2011/ Folimagina Ol'ga Vasil'evna. - Penza, 2011. – 164 s. – Bibliogr.: s.147-162. – 04201252006.
3. Karaseva Ya. A. Povyshenie effektivnosti cement-nyh dispersnyh sistem vodoy v metastabil'nom so-stoyanii: diss.kand. tehn. nauk: 05.03.05: zaschischena 17.12.2008/ Karaseva Yana Anatol'evna. - Penza, 2008. – 154 s.
4. Kozlova I.V. Opyt primeneniya nanorazmernyh cha-stic v proizvodstve stroitel'nyh materialov // Teh-nika i tehnologiya silikatov. 2021. T. 28. №3. S. 81 – 87.
5. Klassen V.I. Omagnichivanie vodnyh sistem. - M.: Himiya, 1982. 296 s.
6. Gorlenko N.P. Nizkoenergeticheskaya aktivaciya dispersnyh sistem: monografiya / N.P. Gorlenko, Yu.S. Sarkisov. – Tomsk: Izd-vo Tom. gos. arhit. stroit. un-ta, 2011. – 264 s.
7. Sobol' S. V. Fraktal'nye parametry vodnyh ob'-ektov [Tekst]: monografiya / S. V. Sobol'; Nizhegor. gos. arhitektur. - stro-it.un - t. – N. Novgorod: NNGASU, 2019. – 232 s. ISBN 978-5-528-00344-3.
8. Sarkisov Yu.S. Osobennosti struktury i svoystv vody v zhidkom agregatnom sostoyanii / Sarkisov Yu.S., Gorlenko N.P., Zubkova O.A., Sarkisov D.Yu. Tehnika i tehnologiya silikatov. – 2021. – T. 28, № 1. – S. 12-17.
9. Kolesnikov V.A., Yakushin R.V., Brodskiy V.A., Ba-busenko E.S., Chistolinov A.V. Issledovanie inakti-vacii boleznetvornyh mikroorganizmov v vode voz-deystviem nizkotemperaturnoy plazmy // Gigiena i sanitariya. - 2016. - T. 95, №6. - S. 588-592.
10. Pshenichnyy G.N. Etyudy otverdevaniya stroitel'-nogo gipsa Tehnika i tehnologiya silikatov. – 2021. – T. 28, № 1. – S. 2-6.
11. Korovyakov V.F. Sovremennye dostizheniya v obla-sti sozdaniya gipsovyh vyazhuschih // Sbornik nauchnyh trudov (k 50-letiyu instituta). M.: GUP «NIIMOS-STROY». – 2006. - 149 s.
12. Kalyadin A.Yu., Nalbandyan G.V., Solov'ev V.G., Bogdanova A.A., Ushkov V.A. Plazmennaya modifi-kaciya komponentov stroitel'nyh rastvorov - effek-tivnyy metod povysheniya ih ekspluatacionnyh svoystv // Vestnik MGSU. - 2019. - T. 14, № 5. - S.548-558.
13. Bruyako M.G., Shuvalova E.A., Zolotarev M.E., Hanmamedova E.N. Vliyanie plazmomodificirovan-noy fibry na svoystva stroitel'nyh kompozitov // Izvestiya vuzov. Investicii. Stroitel'stvo. Nedvi-zhimost'. - 2019. - T. 9, № 4. - S. 716-725.
14. Ibragimov R.A., Korolev E.V. Technical properties of activated gypsum / International Conference on Con-struction, Architecture and Techno-sphere Safety (IC-CATS 2018), Russian Federation (IOP Conference Series: Materials Science and Engineering). - 26–28 September 2018. - South Ural State University, 2018. Volume 451, DOI:https://doi.org/10.1088/1757-899X/451/1/012028.
15. Sazonova N.A., Skripnikova N.K. Using the low-temperature plasma in cement production / 12th In-ternational Conference on Gas Discharge Plasmas and Their Applications. Journal of Physics: Conference Series. – 2015. - V.652. DOIhttps://doi.org/10.1088/1742-6596/652/1/012063.
16. Nalbandyan G.V., Soloviev V.G., Ushkov V.A. Modi-fication of components of fine-grained concretes by low-temperature nonequilibrium plasma / Materials Today: Proceedings. - 2019. V.19, № 5. P. 1841-1844. DOIhttps://doi.org/10.1016/j.matpr.2019.07.024.
17. Moreau M., Orange N., Feuilloley M.G.J. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. – 2008. V. 26. P. 610–617. DOI:https://doi.org/10.1016/j.biotechadv.2008.08.001.
18. Milella A., Palumbo F. Cold plasma / Encyclopedia of Membranes. Drioli E., Giorno L., editors. Springer Berlin Heidelberg. - Berlin, Heidelberg, 2014. pp. 1–2.
19. Rossi F. Sterilization and decontamination of surfaces by plasma discharges / Sterilisation of Biomaterials and Medical Devices. Simmons A., editor. - 2012.
20. Snoeckx R., Bogaerts A. Plasma technology – a novel solution for CO2 conversion? / Chemical Society Review – 2017. – V. 46. P. 5805–5863. DOI:https://doi.org/10.1039/C6CS00066E.
21. Liao X., Cullen P.J., Muhammad A.I., Jiang Z., Ye X., Liu D., Ding T. Cold plasma–based hurdle interventions: new strategies for improving food safety/ Food Engineer-ing Reviews – 2020. – V.12. – P. 321–332. DOI:https://doi.org/10.1007/s12393-020-09222-3.
22. Adhikari B., Adhikari M., Ghimire B., Park G., Choi E.H. Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings / Science Reports. – 2019. - V.9. DOI:https://doi.org/10.1038/s41598-019-52646-z.
23. Thirumdas R., Kothakota A., Annapure U., Siliveru K., Blundell R., Gatt R., Valdramidis V.P. Plasma-activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture / Trends in Food Science and Technology. – 2018. – V. 77. – P. 21–31. DOI:https://doi.org/10.1016/j.tifs.2018.05.007.
24. Primenenie tleyuschego razryada v stroitel'noy i tekstil'noy promyshlennosti / S.V. Fedosov, B.N. Mel'nikov, M.V. Akulova, L.V. Sharnina. Ivanovo: IGHTU, IGASU, 2008. - 236 s.
25. Abdulin I.Sh., Nurullina G.N., Azanova A.A. Plazmennaya modifikaciya prirodnyh polimerov kak faktor povysheniya ekonomicheskoy effektivnosti otdelochnogo proizvodstva / Vestnik Kazanskogo teh-nologicheskogo universiteta. - 2014. - S. 167-168.
26. Azanova A.A., Abdullin I.Sh., Nurullina G.N., Dresvyannikov A.F. Trikotazhnye polotna, otde-lannye s ispol'zovaniem nizkotemperaturnoy plaz-my proizvodstva / Vestnik Kazanskogo tehnologiche-skogo universiteta. - 2014. - S. 61-62.
27. Serdobincev A.A., Venig S.B., Aleksandrov V.A., Mitin D.M., Veselov A.G., Kiryasova O.A., Elmanov V.I. Formirovanie modificirovannyh materialov v potokah nizkotemperaturnoy plazmy / Izvestiya Sa-ratovskogo universiteta. Novaya seriya. Seriya Fizika. - 2013. - T. 13, № 2. - S. 47-50.