OPTIMIZATION OF THE COMPOSITION OF COMPOSITE BINDER FOR DRY HOT CLIMATE CONCRETE
Abstract and keywords
Abstract (English):
A hot dry climate has a significant impact on the properties of concrete. The paper presents the results of experimental studies in the development of the composition of a composite binder consisting of Portland cement and a dolomite microfiller obtained by activating the screening of dolomite crushing in a ball laboratory mill. The content of dolomite filler in Portland cement was 10, 30 and 50%. It has been shown that dolomite micron filler, when its content in the binder is more than 10%, reduces compressive strength. It has been found that dolomite filler reduces water consumption, reduces setting time and reduces shrinkage of the composite binder during hardening. To optimize the composition, a two-factor composite (rotatable) experiment with a quadratic model was used, which ensures maximum strength when the required technological parameters are achieved. The optimal composition of the composite binder, consisting of 67% Portland cement and 23% dolomite filler with a specific surface area of 600 cm2/g, has been established. Therefore, to increase the crack resistance of concrete, the use of dolomite filler as part of a composite binder for concrete in dry, hot climates is relevant, due to its low-er shrinkage during hardening.

Keywords:
concrete, carbonate materials, dolomite quarry waste, filler, blended binder, Portland cement
References

1. S. Ghourchian, M. Wyrzykowski, L. Baquerizo, P. Lura. Sus-ceptibility of Portland cement and blended cement concretes to plas-tic shrinkage cracking // Cement and Concrete Composites. 2018, № 85. Pp. 44-55. https://doi.org/10.1016/j.cemconcomp.2017.10.002

2. M. Wyrzykowski, C. Di Bella, D. Sirtoli, N. Toropovs, P. Lura. Plastic shrinkage of concrete made with calcined clay-limestone cement // Cement and Concrete Research. 2025, N. 189, P. 107784

3. Kayondo M., Combrinck R., Boshoff W.P. State-of-the-art review on plastic cracking of concrete // Construction and Building Materials 2019, N. 225. Pp. 886–899.

4. Kouznetsova T.V.; Samchenko S.V. Resistance of the calcium sulphoaluminate phases to carbonation. Cement. Wapno. Beton, 2014, №5, Pp. 317–322.

5. L. Courard, D. Herfort, Y. Villagran. Limestone Powder, In book Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials. State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4.

6. Polistrukturnaya teoriya kompozicionnyh stroitel'nyh materialov / V.I. Solomatov, V. N. Vyrovoy, A. N. Bobryshev i dr. Tashkent: Fan, 1991. - 342 s.

7. V. I. Solomatov, M. K. Tahirov, Md. Taher Shah. Intensiv-naya tehnologiya betonov. Moskva: Stroyizdat, 1989. – 264 s.

8. V. I. Solomatov, V. N. Vyrovoy, N. A. Abbashanov. Beton kak kompozicionnyy material: Obzor. Tashkent: UzNIINTI, 1985. - 31 s.

9. Yu. M. Bazhenov, V. S. Dem'yanova, V. I. Kalashnikov. Modificirovannye vysokokachestvennye betony. M.: Izd-vo ASV, 2006. - 368 s.

10. Zajac, M., Rossberg, A., Le Saout, G., Lothenbach, B. Influence of limestone and anhydrite on the hydration of Portland cements // Cement & Concrete Composites. 46 (2014). P. 99 – 108 https://doi.org/10.1016/j.cemconcomp.2013.11.007

11. Samchenko, S. V. Termodinamicheskaya ocenka vliyaniya kar-bonata kal'ciya na gidrataciyu cementa / S. V. Samchenko, N. I. Kudryashov, A. Yu. Gurkin // Tehnika i tehnologiya silikatov. – 2020. – T. 27, № 1. – S. 6-12. – EDN WCHLDQ.

12. V.V. Timashev, Kolbasov V.I. Svoystva cementov s karbonatnymi dobavkami // Cement. 1981. №10, S. 10-12.

13. Samchenko, S.V.; Larsen, O.A.; Kozlova, I.V.; Alpackiy, D.G.; Alobaidi, D.A.N. Concrete Modification for Hot Weather Using Crushed Dolomite Stone. Buildings 2023,13,2462. https://doi.org/https://doi.org/10.3390/buildings13102462

14. Yu. M. Bazhenov, V. S. Dem'yanova, V. I. Kalashnikov. Modificirovannye vysokokachestvennye betony. M. : Izd-vo ASV, 2006. 368 s.

15. Larsen O. A., Al'obaidi D. A. N., Narut' V.V., Matyushin E.V., Butenko K. A., Veselov V.K. Poluchenie dolomitovogo mikronapolnitelya dlya betonov, ekspluatiruemyh v usloviyah suhogo zharkogo klimata // Tehnika i tehnologiya silikatov. 2023. T.30. No 1. S. 56 – 65.

16. Boos, P.; Hardtl, R. Experience Report Portland Limestone Cement; Report Heidelberg Cement Technology Center: Heidelberg, Germany, 2004; p. 34.

17. Bentz, D.P.; Jones, S.Z.; Lootens, D. Minimizing Paste Content in Concrete Using Limestone Powders – Demonstration Mixtures. National Institute of Standards and Technology; Technical Note; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1906.

18. Danilov A.M., Gar'kina I.A., Koroleva O.V., Smirnov V.A. Matematicheskie metody pri razrabotke i upravlenii kachestvom materialov special'nogo naznacheniya // Stroitel'nye materialy. 2010. № 3. S. 112-117. EDN: https://elibrary.ru/MSTUCD

19. Voglis N., Kakali G., Chaniotakis E., Tsivilis S. Portland-limestone cements. Their properties and hydration compared to those of other composite cements // Cement and Concrete Compo-sites 27 (2005) 191–196.

20. Tsivilis S., Chaniotakis E., Badogiannis E., Pahoulas G., Ilias A. A study on the parameters affecting the properties of Portland limestone cements // Cement and Concrete Composites, 1999. № 21. Pp. 107-116.

21. Novikov, N. V. Baritsoderzhaschie radiacionnozaschitnye stroitel'nye materialy / N. V. Novikov, S. V. Samchenko, G. E. Okol'nikova // Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya. – 2020. – T. 21, № 1. – S. 94-98. – DOIhttps://doi.org/10.22363/2312-8143-2020-21-1-94-98. – EDN YFXCST.

22. I. B. Topccu, H. Baylavli, The use of concrete wastes as a lime-stone replacement in limestone-blended cement production // Kuwait Journal Science 2019. 46, 2. Pp. 67-73.

23. L. Courard, R. Degeimbre, A. Darimont, F. Michel, X. Willem, S. Flamant Some effects of limestone aggregates as a partial replacement of cement in solutions of the composition. In: Banthia N (ed.) ConMat’05 Third International Conference on Building Materials: Performance, Innovation and Design Implications. Vancouver, Canada (2005) (August 22-24, 2005).

24. S.V. Samchenko, O.V. Aleksandrova, A.Yu. Gurkin. Svoĭstva cementnyh kompozitov na osnove izvestnyaka v zavisimosti ot ego granulometricheskogo sostava // Vestnik MGSU. 2020. T. 15. Vyp. 7. S. 999–1006. DOI:https://doi.org/10.22227/1997-0935.2020.7.999-1006

25. Barbhuiya, S. Effects of fly ash and dolomite powder on the properties of self-compacting concrete. Construction and Building Materials 2011, 25(8), 3301–3305.

26. J. Stark, B. Moser, F. Bellmann, Nucleation and growth of C-S-H phases on mineral admixtures, Advances in Construction Materials (2007) 531-538.

27. Strukturoobrazuyuschaya rol' mikrokal'cita v cementnyh kompoziciyah dlya 3D-pechati / G. S. Slavcheva, V. A. Solonina, Yu. F. Panchenko [i dr.] // Tehnika i tehnologiya silikatov. – 2024. – T. 31, № 4. – S. 313-322. – DOIhttps://doi.org/10.62980/2076-0655-2024-313-322. – EDN ZAQLZO.

28. Briki, Y.; Zajac, M.; Haha, M.B.; Scrivener, K. Impact of lime-stone fineness on cement hydration at early age. Cement and Concrete Research. 2021, №147. P.106515.

29. Samchenko, S. V. Karbonizaciya gidratnyh sostavlyayuschih portlandcementa, alyuminatnogo i sul'foalyuminatnogo cementov / S. V. Samchenko, E. M. Makarov // Tehnika i tehnologiya silikatov. – 2013. – T. 20, № 3. – S. 27-29. – EDN REPQZR.

30. Korolev E.V. Tehniko-ekonomicheskaya effektivnost' no-vyh tehnologicheskih resheniĭ. Analiz i sovershenstvovanie // Stroitel'nye materialy. 2017. No 3. S. 85–88.

Login or Create
* Forgot password?