УДК 666.3 Керамика в целом. Керамическое сырье
ГРНТИ 61.35 Технология производства силикатных и тугоплавких неметаллических материалов
ОКСО 18.06.01 Химическая технология
ББК 351 Основные процессы и аппараты химической технологии
ТБК 5017 Материаловедение
В последние годы реализуется тренд на миниатюризацию функциональных керамических устройств при улучше-нии их характеристик. При этом сильно усложняется процесс их быстрого прототипирования и увеличивается себестоимость при использовании классических технологий производства. Являясь развивающейся технологией, мультиматериальная 3D-печать способна не только обеспечить создание керамических изделий сложных форм (включая недоступные при использовании классических технологий), но и на порядки ускорить скорость прототипирования при значительном снижении себестоимости. В данной статье рассматриваются последние достижения в области методов мультиматериальной 3D-печати, а также проводится всестороннее исследование функциональных керамических материалов и процессов, пригодных для 3D-печати, для различных функциональных керамических устройств, включая конденсаторы, многослойные под-ложки и микрополосковые антенны. Кроме того, определены ключевые проблемы и перспективы функциональных керамических устройств с 3D-печатью из нескольких материалов и обсуждены направления на будущее.
аддитивные технологии, керамика, HTCC, LTCC, мультиматериальная 3D-печать
1. Wolf, A.; Rosendahl, P.L.; Knaack, U. Additive manufacturing of clay and ceramic building components. Autom. Constr. 2021, 133, 103956.
2. He, Q.; Jiang, J.; Yang, X.; Zhang, L.; Zhou, Z.; Zhong, Y.; Shen, Z. Additive manufacturing of dense zir-conia ceramics by fused deposition modeling via screw extrusion. J. Eur. Ceram. Soc. 2020, 41, 1033–1040.
3. Wang, F.; Li, Z.; Lou, Y.; Zeng, F.; Hao, M.; Lei, W.; Wang, X.; Wang, X.; Fan, G.; Lu, W. Stereolitho-graphic additive manufacturing of Luneburg lens using Al2O3-based low sintering temperature ceramics for 5G MIMO antenna. Addit. Manuf. 2021, 47, 102244.
4. Liu, K.; Zhou, C.; Hu, J.; Zhang, S.; Zhang, Q.; Sun, C.; Shi, Y.; Sun, H.; Yin, C.; Zhang, Y.; et al. Fabrica-tion of barium titanate ceramics via digital light pro-cessing 3D printing by using high refractive index mono-mer. J. Eur. Ceram. Soc. 2021, 41, 5909–5917.
5. Khan, A.; Rahman, K.; Ali, S.; Khan, S.; Wang, B.; Bermak, A. Fabrication of circuits by multi-nozzle electrohydrodynamic inkjet printing for soft wearable electronics. J. Mater. Res. 2021, 36, 3568–3578.
6. Karim, N.; Afroj, S.; Tan, S.; Novoselov, K.S.; Yeates, S.G. All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electron-ics Applications. Sci. Rep. 2019, 9, 8035.
7. Kant, T.; Shrivas, K.; Tapadia, K.; Devi, R.; Ga-nesan, V.; Deb, M.K. Inkjet-printed paper-based electro-chemical sensor with gold nano-ink for detection of glu-cose in blood serum. New J. Chem. 2021, 45, 8297–8305.
8. Khan, S.; Nguyen, T.; Lubej, M.; Thiery, L.; Vairac, P.; Briand, D. Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide mem-branes. Microelectron. Eng. 2018, 194, 71–78.
9. Lim, S.; Joyce, M.; Fleming, P.D.; Aijazi, A.T.; Atashbar, M. Inkjet Printing and Sintering of Nano-Copper Ink. J. Imaging Sci. Technol. 2013, 57, 50506-1–50506-7.
10. Khan, A.; Rahman, K.; Kim, D.S.; Choi, K.H. Di-rect printing of copper conductive micro-tracks by multi-nozzle electrohydrody- namic inkjet printing process. J. Mater. Process. Technol. 2011, 212, 700–706.
11. Majee, S.; Karlsson, M.C.F.; Wojcik, P.J.; Sawatdee, A.; Mulla, M.Y.; Alvi, N.U.H.; Dyreklev, P.; Beni, V.; Nilsson, D. Low temperature chemical sintering of inkjet-printed Zn nanoparticles for highly conductive flexible electronic components. npj Flex. Electron. 2021, 5, 32.
12. Mahajan, B.K.; Ludwig, B.; Shou, W.; Yu, X.; Fregene, E.; Xu, H.; Pan, H.; Huang, X. Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Sci. China Inf. Sci. 2018, 61, 060412.
13. Singh, A.; Katiyar, M.; Garg, A. Understanding the formation of PEDOT:PSS films by ink-jet printing for organic solar cell applications. RSC Adv. 2015, 5, 78677–78685.
14. Zips, S.; Grob, L.; Rinklin, P.; Terkan, K.; Adly, N.Y.; Weiß, L.J.K.; Mayer, D.; Wolfrum, B. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications. ACS Appl. Mater. Inter-faces 2019, 11, 32778–32786.
15. Yang, C.-Y.; Stoeckel, M.-A.; Ruoko, T.-P.; Wu, H.-Y.; Liu, X.; Kolhe, N.B.; Wu, Z.; Puttisong, Y.; Musu-meci, C.; Massetti, M.; et al. A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 2021, 12, 2354.
16. McKerricher, G.; Maller, R.; Mohammad, V.; McLachlan, M.A.; Shamim, A. Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alu-mina dielectric ink. Ceram. Int. 2017, 43, 9846–9853.
17. Lim, J.; Jung, H.; Baek, C.; Hwang, G.-T.; Ryu, J.; Yoon, D.; Yoo, J.; Park, K.-I.; Kim, J.H. All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material. Nano Ener-gy 2017, 41, 337–343.
18. Craton, M.T.; He, Y.; Roch, A.; Chahal, P.; Pa-papolymerou, J. Additively manufactured interdigitated capacitors using barium titanate nanocomposite inks. In Proceedings of the 2019 49th European Microwave Con-ference (EuMC), Paris, France, 1–3 October 2019; pp. 488–491.
19. Rahul, S.; Balasubramanian, K.; Venkatesh, S. Optimizing inkjet printing process to fabricate thick ce-ramic coatings. Ceram. Int. 2017, 43, 4513–4519.
20. Özkol, E.; Wätjen, A.M.; Bermejo, R.; Deluca, M.; Ebert, J.; Danzer, R.; Telle, R. Mechanical characteri-sation of miniaturised direct inkjet printed 3Y-TZP speci-mens for microelectronic applications. J. Eur. Ceram. Soc. 2010, 30, 3145–3152.
21. Zhu, Z.; Zhang, J.; Zhou, Z.; Ning, H.; Cai, W.; Wei, J.; Zhou, S.; Yao, R.; Lu, X.; Peng, J. A Simple, Low-Cost Ink System for Drop-on-Demand Printing High Per-formance Metal Oxide Dielectric Film at Low Tempera-ture. ACS Appl. Mater. Interfaces 2019, 11, 5193–5199. [PubMed]
22. Awais, M.N.; Kim, H.C.; Doh, Y.H.; Choi, K.H. ZrO2 flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 2013, 536, 308–312.
23. Huckaba, A.J.; Lee, Y.; Xia, R.; Paek, S.; Bas-setto, V.C.; Oveisi, E.; Lesch, A.; Kinge, S.; Dyson, P.J.; Girault, H.; et al. Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells. Energy Technol. 2018, 7, 317–324.
24. Padrón-Hernández, W.; Ceballos-Chuc, M.C.; Pourjafari, D.; Oskam, G.; Tinoco, J.C.; Martínez-López, A.; Rodríguez-Gattorno, G. Stable inks for inkjet printing of TiO2 thin films. Mater. Sci. Semicond. Process. 2018, 81, 75–81.
25. Mikolajek, M.; Friederich, A.; Kohler, C.; Rosen, M.; Rathjen, A.; Krüger, K.; Binder, J.R. Direct Inkjet Printing of Dielectric Ceramic/Polymer Composite Thick Films. Adv. Eng. Mater. 2015, 17, 1294–1301.
26. Wu, X.; Fei, F.; Chen, Z.; Su, W.; Cui, Z. A new nanocomposite dielectric ink and its application in printed thin-film transistors. Compos. Sci. Technol. 2014, 94, 117–122.
27. Singlard, M.; Aimable, A.; Lejeune, M.; Dossou-Yovo, C.; Poncelet, M.; Noguera, R.; Modes, C. Aqueous suspensions of glass silicate dielectric powders for ink-jet printing applications. Powder Technol. 2014, 266, 303–311.
28. Zhang, F.; Tuck, C.; Hague, R.; He, Y.; Saleh, E.; Li, Y.; Sturgess, C.; Wildman, R. Inkjet printing of polyi-mide insulators for the 3D printing of dielectric materials for microelectronic applications. J. Appl. Polym. Sci. 2016, 133, 43361–43371.
29. Yi, L.; Torah, R.; Beeby, S.; Tudor, J. An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applica-tions. In Proceedings of the Sensors, Taipei, Taiwan, 28–31 October 2012.
30. Jung, C.; Tang, X.; Kwon, H.-J.; Wang, R.; Oh, S.M.; Ye, H.; Jeong, Y.R.; Jeong, Y.J.; Kim, S.H. Electro-hydrodynamic-Printed Polyvinyl Alcohol-Based Gate Insulators for Organic Integrated Devices. Adv. Eng. Ma-ter. 2022, 24, 2100900.
31. Arango, I.; Cañas, M. Dynamic analysis of a re-circulation system of micro functional fluids for ink-jet applications. Microsyst. Technol. 2017, 23, 1485–1494.
32. Seidel, J.; Claussen, N.; Rödel, J. Reliability of alumina ceramics: Effect of grain size. J. Eur. Ceram. Soc. 1995, 15, 395–404.
33. Zhu, Z.; Gong, Z.; Qu, P.; Li, Z.; Rasaki, S.A.; Liu, Z.; Wang, P.; Liu, C.; Lao, C.; Chen, Z. Additive manufacturing of thin electrolytelayers via inkjet printing of highly-stable ceramic inks. J. Adv. Ceram. 2021, 10, 279–290.
34. Wätjen, A.M.; Gingter, P.; Kramer, M.; Telle, R. Novel Prospects and Possibilities in Additive Manufactur-ing of Ceramics by means of Direct Inkjet Printing. Adv. Mech. Eng. 2014, 6, 141346.
35. Secor, E.B. Guided in kand process design forae osoljet printing based on an nular drying effects. Flex. Print. Electron. 2018,3, 035007.
36. Tarabella, G.; Vurro, D.; Lai, S.; D’Angelo, P.; Ascari, L.; Iannotta, S. Aerosoljet printing of PEDOT: PSS for largea reaflexible electronics. Flex. Print. Electron. 2020, 5, 014005.
37. Akhatov, I.; Hoey, J.; Swenson, O.; Schulz, D. A erosol focusing in micro-capillaries: Theory and experi-ment. J. AerosolSci.2008, 39, 691–709.
38. Xu, M.; Lewis, J.A. Phase Behavior and Rheolog-ical Properties o fPolyamine-Rich Complexes for Direct Write Assembly. Langmuir 2007, 23, 12752–12759. [PubMed]
39. Betancourt, N.; Chen, X. Review of extrusion based multimaterial bioprinting processes. Bioprinting 2022, 25, e00189.
40. Poltue, T.; Karuna, C.; Khrueaduangkham, S.; Seehanam, S.; Promoppatum, P. Design exploration of 3D-printed triplyperiodic minimal surface scaffolds for bone implants. Int. J. Mech. Sci. 2021, 211, 106762.
41. Han, D.; Yang, C.; Fang, N.X.; Lee, H. Rapid multi-material 3D printing with projection micro-stereolithography using dynamicfluidic control. Addit. Manuf. 2019, 27, 606–615.
42. Fu, Y.; Zhang, P.; Li, B.; Zhang, B.; Yu, Y.; Shen, Z.; Zhang, X.; Wu, J.; Nan, C.; Zhang, S. Inkjet Printing of Perovskite Nanosheets for Microcapacitors. Adv. Elec-tron. Mater. 2021, 7, 2100402.
43. Friederich, A.; Köhler, C.; Nikfalazar, M.; Wiens, A.; Jakoby, R.; Bauer, W.; Binder, J.R. Inkjet-Printed Metal-Insulator-Metal Capacitors for Tunable Micro-wave Applications. Int. J. Appl. Ceram. Technol. 2015, 12, E164–E173.
44. Dossou-Yovo, C.; Mouenot, M.; Beaudrouet, E.; Bessaudou, M.; Bernardin, N.; Charifi, F.; Coquet, C.; Borella, M.; Noguera, R.; Modes, C.; et al. Inkjet Printing Technology: A Novel Bottom-up Approach for Multilayer Ceramic Components and High Definition Printed Elec-tronic Devices. J. Microelectron. Electron. Packag. 2012, 9, 187–198.
45. Matavž, A.; Bencˇan, A.; Kovacˇ, J.; Chung, C.; Jones, J.L.; Trolier-McKinstry, S.; Malicˇ, B.; Bobnar, V. Additive Manufacturing of Ferroelectric-Oxide Thin-Film Multilayer Devices. ACS Appl. Mater. Interfaces 2019, 11, 45155–45160. [PubMed]
46. Reinheimer, T.; Azmi, R.; Binder, J.R. Polymeriz-able Ceramic Ink System for ThinInkjet-Printed Dielectric Layers. ACSAppl. Mater. Interfaces 2019, 12, 2974–2982.
47. Hirao, T.; Hamada, S. Novel Multi-Material 3-Dimensional Low-Temperature Co-Fired Ceramic Base. IEEE Access 2019, 7, 12959–12963.
48. Imanaka, Y.; Amada, H.; Kumasaka, F.; Takahashi, N.; Yamasaki, T.; Ohfuchi, M.; Kaneta, C. Nanoparticulated Dense and Stress-Free Ceramic Thick Film for Material Integration. Adv. Eng. Mater. 2013, 15, 1129–1135.
49. Raynaud, J.; Pateloup, V.; Bernard, M.; Gourdonnaud, D.; Passerieux, D.; Cros, D.; Madrangeas, V.; Michaud, P.; Chartier, T. Hybridization of additive manufacturing processes to build ceramic/metal parts: Example of HTCC. J. Eur. Ceram. Soc. 2021, 41, 2023–2033.
50. Oh, Y.; Bharambe, V.; Mummareddy, B.; Mar-tin, J.; McKnight, J.; Abraham, M.A.; Walker, J.M.; Rog-ers, K.; Conner, B.; Cortes, P.; et al. Microwave dielectric properties of zirconia fabricated using NanoParticle Jet-ting™. Addit. Manuf. 2019, 27, 586–594
51. Lee, J.-Y.; Choi, C.-S.; Hwang, K.-T.; Han, K.-S.; Kim, J.-H.; Nahm, S.; Kim, B.-S. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing. Nanomaterials 2021, 11, 1295.
52. Castro, J.; Rojas, E.; Ross, A.; Weller, T.; Wang, J. High kandlow loss ther moplastic composites for used Deposition Modeling and their application to 3D-printed Kuband antennas. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4.
53. Castro, J.; Rojas, E.; Weller, T.; Wang, J. High -kand low loss polymer composites with cofired Nd and Mg Catitanates for 3DRF and microwave printed devices: Fabrication and characterization. In Proceedings of the 2015 IEEE 16th Annual Wireless and Microwave Tech-nology Conference (WAMICON), Cocoa Beach, FL, USA, 13–15 April 2015; pp. 1–5.
54. Castro, J.; Rojas-Nastrucci, E.A.; Ross, A.; Weller, T.M.; Wang, J. Fabrication, Modeling, and Appli-cation of Ceramic Thermoplastic Composites for Fused Deposition Modeling of Microwave Components. IEEE Trans. Microw. Theory Tech. 2017, 65, 2073–2084.
55. Mikolajek, M.; Reinheimer, T.; Bohn, N.; Kohler, C.; Hoffmann, M.J.; Binder, J.R. Fabrication and Charac-terization of Fully InkjetPrinted Capacitors Based on Ce-ramic/Polymer Composite Dielectrics on Flexible Sub-strates. Sci. Rep. 2019, 9, 13324.
56. Lim, J.; Kim, J.; Yoon, Y.J.; Kim, H.; Yoon, H.G.; Lee, S.-N.; Kim, J. All inkjet printed Metal Insulator Metal (MIM) capacitor. Curr. Appl. Phys. 2012, 12, e14–e17.
57. Reinheimer, T.; Baumann, V.; Binder, J.R. Fabri-cation of Flexible Multilayer Composite Capacitors Using Inkjet Printing. Nanoma-terials 2020, 10, 2302.
58. Wang, P.; Li, J.; Wang, G.; He, L.; Yu, Y.; Xu, B. Multimaterial Additive Manufacturing of LTCC Matrix and Silver Conductors for3D Ceramic Electronics. Adv. Mater. Technol. 2022, 7, 2101462
59. Raynaud, J.; Pateloup, V.; Bernard, M.; Gourdonnaud, D.; Passerieux, D.; Cros, D.; Madrangeas, V.; Chartier, T. Hybridization of additive manufacturing processes to build ceramic/metal parts: Example of LTCC. J. Eur. Ceram. Soc. 2020, 40, 759–767.