ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ГЕОПОЛИМЕРОВ В 3D-ПЕЧАТИ: КРИТИЧЕСКИЙ ОБЗОР
Аннотация и ключевые слова
Аннотация (русский):
3D-печать, появившаяся в 1980-х годах, в настоящее время получила широкое распространение во всех сферах жизни. Многие исследователи совершают революцию в строительстве зданий с помощью технологии 3D-печати. Основными экс-плуатационными параметрами 3D-печати являются короткое время схватывания, быстрое отверждение, хорошая обра-батываемость, тиксотропность, высокая прочность на сжатие и изгиб. Согласно современным исследованиям, геополи-меры по своим свойствам подходят для этого больше, чем любой другой материал. Геополимеры могут быть альтернати-вой портландцементу по своим физико-механическим свойствам и позволяют легко достигнуть желаемых параметров без добавления каких-либо дорогостоящих компонентов и получать ещё лучшие свойства с точки зрения огнестойкости, хи-мической стойкости, водонепроницаемости и термостойкости. С другой стороны, геополимеры можно рассматривать как инструмент восстановления окружающей среды благодаря меньшим выбросам CO2, меньшим энергозатратам на их изготовление, возможности использования побочных промышленных продуктов при их производстве. Цель данного обзо-ра – изучить потенциал использования геополимеров для 3D-печати. Для этого, во-первых, в статье рассматриваются перспективы использования технологии 3D-печати, а затем основное внимание уделяется печатным геополимерным рас-творам. В результате обзора показано, что технология 3D-печати, в первую очередь для жилищного строительства, бу-дет расширяться, и для этого очень перспективными могут оказаться геополимеры.

Ключевые слова:
3D-печать, корпус, геополимер, строительный раствор, летучая зола, метакаолин, доменный шлак, красный шлам, галлуазит
Список литературы

1. Grand View Research. 3D Printing Market Size, Share & Trends Analysis Report by Component (Hardware, Software, Services), by Printer Type, by Technology, by Software, by Application, by Vertical, by Region, and Segment Forecasts, 2022-2030., (2022). https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis.

2. J. Davidovits, Geopolymer chemistry & applications, 2015.

3. A.C.C. Trindade, F. de Andrade Silva, W.M. Kriven, Me-chanical behavior of K-geopolymers reinforced with silane-coated basalt fibers, J. Am. Ceram. Soc. 104 (2021) 437–447. https://doi.org/10.1111/jace.17446.

4. T. Jiang, Z. Liu, X. Tian, J. Wu, L. Wang, Review on the im-pact of metakaolin-based geopolymer’s reaction chemistry, nanostructure and factors on its properties, Constr. Build. Ma-ter. 412 (2024) 134760. https://doi.org/10.1016/j.conbuildmat.2023.134760.

5. R. Fediuk, A. Yushin, Composite binders for concrete with reduced permeability, in: IOP Conf. Ser. Mater. Sci. Eng., 2016. https://doi.org/10.1088/1757-899X/116/1/012021.

6. M. Ziada, H. Tanyildizi, M. Uysal, The influence of carbon nanotube on underwater geopolymer paste based on me-takaolin and slag, Constr. Build. Mater. 414 (2024) 135047. https://doi.org/10.1016/j.conbuildmat.2024.135047.

7. S. Singh, A. Kumar, T.G. Sitharam, Experimental study on strength, durability, hydraulic and toxicity characteristics of soil treated with mine tailings based geopolymers for sustain-able road subgrade application, Constr. Build. Mater. 414 (2024) 134894. https://doi.org/10.1016/j.conbuildmat.2024.134894.

8. J. Shi, Y. Shen, W. Zhang, Y. Fu, X. Kong, Effects of three different nanomaterials on the properties and microstructure of sludge based geopolymers, Constr. Build. Mater. 414 (2024) 134965. https://doi.org/10.1016/j.conbuildmat.2024.134965.

9. S. Prasanphan, S. Onutai, N. Nawaukkaratharnant, Influence of partial replacement of calcined red clay by gypsum-bonded casting investment waste on geopolymerization reaction of red clay-based geopolymer, Heliyon. 10 (2024) e24448. https://doi.org/10.1016/j.heliyon.2024.e24448.

10. S. Sharmin, P.K. Sarker, W.K. Biswas, R.M. Abousnina, U. Javed, Characterization of waste clay brick powder and its effect on the mechanical properties and microstructure of geo-polymer mortar, Constr. Build. Mater. 412 (2024) 134848. https://doi.org/10.1016/j.conbuildmat.2023.134848.

11. N. Makul, R. Fediuk, M. Amran, A.M. Zeyad, S. Klyuev, I. Chulkova, T. Ozbakkaloglu, N. Vatin, M. Karelina, A. Azeve-do, Design Strategy for Recycled Aggregate Concrete: A Re-view of Status and Future Perspectives, Crystals. 11 (2021) 695. https://doi.org/10.3390/cryst11060695.

12. S. Debbarma, X. Shi, A. Torres, M. Nodehi, Fiber-reinforced lunar geopolymers synthesized using lunar regolith simulants, Acta Astronaut. 214 (2024) 593–608. https://doi.org/10.1016/j.actaastro.2023.11.013.

13. R.S. Fediuk, A.K. Smoliakov, R.A. Timokhin, V.O. Ba-tarshin, Y.G. Yevdokimova, Using thermal power plants waste for building materials, in: IOP Conf. Ser. Earth Environ. Sci., 2017. https://doi.org/10.1088/1755-1315/87/9/092010.

14. A. Naghizadeh, L.N. Tchadjie, S.O. Ekolu, M. Welman-Purchase, Circular production of recycled binder from fly ash-based geopolymer concrete, Constr. Build. Mater. 415 (2024) 135098. https://doi.org/10.1016/j.conbuildmat.2024.135098.

15. R. Prakash, N. Divyah, S. Srividhya, S. Avudaiappan, M. Amran, S. Naidu Raman, P. Guindos, N.I. Vatin, R. Fediuk, Effect of Steel Fiber on the Strength and Flexural Characteris-tics of Coconut Shell Concrete Partially Blended with Fly Ash, Materials (Basel). 15 (2022) 4272. https://doi.org/10.3390/ma15124272.

16. A.V. Klyuev, N.F. Kashapov, S.V. Klyuev, R.V. Lesovik, M.S. Ageeva, E.V. Fomina, Development of alkali-activated binders based on technogenic fibrous materials, Constr. Ma-ter. Prod. 6 (2023) 60–73. https://doi.org/10.58224/2618-7183-2023-6-1-60-73.

17. F. Moretti, Concrete Beam Created with 3D Printing, (2015). https://www.3dwasp.com/en/concrete-beam-created-with-3d-printing.

18. B. Jackson, Institute for Advanced Architecture of Cata-lonia Takes a Natural Approach to on Site 3D Printing for Construction, (2017). https://3dprintingindustry.com/news/institute-advanced-architecture-catalonia-takes-natural-approach-site-3d-printing-construction-109897.

19. D. Kruger, Take Me Higher: 3D-Printed Concrete Could Give Wind Turbines a Powerful Lift, (2020). https://www.ge.com/news/reports/take-me-higher-3d-printed-concrete-could-give-wind-turbines-powerful-lift.

20. T. Kellner, Fit to Print: GE is Looking at 3D-Printing Wind Turbine Towers from Concrete for More Efficient Wind Farms, (2023). https://www.ge.com/news/reports/fit-to-print-ge-is-looking-at-3d-printing-wind-turbine-towers-from-concrete-for-more.

21. M. Fulcher, Chinese Firm 3D Prints Villa and Apartment Block, (2015). https://www.architectsjournal.co.uk/archive/chinese-firm-3d-prints-villa-and-apartment-block.

22. M. Starr, 3D-Printed Apartment Building and Mansion (Pictures), (2015). https://www.cnet.com/pictures/3d-printed-apartment-building-and-mansion-pictures.

23. M. Kremenetsky, 3D Printed Farmhouse Unveiled in Chi-na Ahead of 2022 Winter Olympics, (2021). https://3dprint.com/287286/3d-printed-farmhouse-unveiled-in-china-ahead-of-2022-winter-olympics/amp.

24. AICT, Wujiazhuang Village, (2021). https://www.aictbuild.com/wujiazhuangvillage.

25. 3D Sourced. The 12 Most Exciting 3D Printed House Builds 2022, (2021). https://www.3dsourced.com/guides/3d-printed-house-2.

26. S. Nikolopoulos, Construction Completed on Largest 3D-Printed Building in The World, (2020). https://www.thomasnet.com/insights/construction-completed-on-largest-3d-printed-building-in-the-world.

27. A. Anre, World’s Largest 3D Printed Building – Dubai’s Municipality Building., (2021). https://www.prodyogi.com/2021/07/worlds-largest-3d-printed-building.html.

28. N. Zherebtsov, The Largest in The World 3D-Printed Building was Made in Dubai, (2020). https://www.manufacturingtomorrow.com/article/2020/01/the-largest-in-the-world-3d-printed-building-was-made-in-dubai/14634.

29. Apis Cor, (2019). https://apis-cor.com/2019/12/19/dubai-unveils-the-worlds-largest-3d-printed-building-by-apis-cor.

30. B. Loker, World’s First 3D-Printed House Springs Up in Russia in 24hrs, (2017). https://www.dwell.com/article/worlds-first-3d-printed-house-springs-up-in-russia-in-24hrs-d71031f4.

31. 3D Today. V Tatarstane Stroyat Poselok s 3D-Pechatnymi Domami, (2022). https://3dtoday.ru/blogs/news3dtoday/v-tatarstane-stroyat-poselok-s-3d-pecatnymi-domami.

32. Kvadrum3d. Kottedzhnyi Poselok KVADRUM Unikalnye Doma, Sozdannye 3d-Printerom, (2022).

33. ICON. The Chicon House, (2018). https://www.iconbuild.com/projects/chicon-house.

34. M. Saxton, 3D-Printed House in Austin, Texas, (2020). https://www.buildwithrise.com/stories/3d-printed-house-austin-texas.

35. Businesswire. Mighty Buildings Completes World’s First 3D-Printed Zero Net Energy Home, Announces B2B Strategy Expansion to Accelerate Growth, (2022). https://www.businesswire.com/news/home/20221011005971/en/Mighty-Buildings-Completes-World’s-First-3D-Printed-Zero-Net-Energy-Home-Announces-B2B-Strategy-Expansion-to-Accelerate-Growth.

36. UvEb Technology. Mighty Buildings’ 3D-Printed Sustain-able Homes, (2022). https://uvebtech.com/articles/2022/mighty-buildings-3d-printed-sustainable-homes.

37. M. Aysha, Mighty Buildings, 3D Printing Houses on the Spot, (2020). https://www.3dnatives.com/en/mighty-buildings-interview-051020205.

38. K. Mazade, Mighty Buildings Completes 3D-Printed Net-Zero Home in Southern California, (2022). https://www.dezeen.com/2022/11/04/mighty-buildings-worlds-first-3d-printed-zero-net-home-california.

39. SQ4D. Largest 3D Printed House as of August 2022, (2022). https://www.sq4d.com/islandia-print.

40. RiceHouse. GAIA – 3D Realization, (2018). https://www.ricehouse.it/en/storie/gaia.

41. WASP. TECLA, (2021). www.3dwasp.com/casa-stampata-in-3d-tecla.

42. K. Hui, Tecla is the First 3D Printed House Made of Raw Earth in Ravenna, (2021). https://www.yellowtrace.com.au/tecla-first-3d-printed-raw-earth-house-sustainable-architecture-techology.

43. C. Clarke, French BatiPrint3D Project to Construct House with “Inside-Out” 3D Printing., (2017). https://3dprintingindustry.com/news/french-batiprint3d-project-construct-house-inside-3d-printing-110099.

44. T. Vialva, A French Family is the First to Move into A 3D Printed House., (2018). https://3dprintingindustry.com/news/a-french-family-is-the-first-to-move-into-a-3d-printed-house-135881.

45. G. Woodford, COBOD Welcomes Explosive Growth and Second Year of Profitability, (2021). https://www.aggbusiness.com/ab7/news/cobod-welcomes-explosive-growth-and-second-year-profitability.

46. PERI Builds the First 3D-Printed Apartment Building in Germany, (2020). https://www.peri.com/en/company/press-releases/peri-builds-the-first-3d-printed-apartment-building-in-germany.html.

47. S. Kety, Remember “Project Milestone”? One of the First 3D Printed Houses is Over and First Residents Received Key., (2021). https://3dadept.com/remember-project-milestone-one-of-the-first-3d-printed-houses-is-over-and-first-residents-received-key.

48. S. Fourtané, 3D-Concrete-Printing Smart Housing for Smart Cities in The Netherlands., (2018).

49. D. Malone, The World’s First 3D Printed School Com-pletes in Malawi, Africa, (2021). https://www.bdcnetwork.com/worlds-first-3d-printed-school-completes-malawi-africa.

50. E. Pollock, Formerly Homeless Man Becomes First Us Res-ident of 3D Printed Tiny Home, (2021). https://3dprint.com/280234/formerly-homeless-man-becomes-first-us-resident-of-3d-printed-tiny-home.

51. B. Khoshnevis, An Appeal to Readers of Founder, Presi-dent, and CEO of Contour Crafting Corporation, (2017). https://www.contourcrafting.com.

52. D. Andresen, Hempcreate: The Art of Hemp Based Geopol-ymer Extrusion., (2014). https://geopolymer.org/fichiers/gpcamp-2014.

53. A. Dudnikov, A. Reggiani, M. Dudnikova, The Application of Geopolymer Concrete in the First Mobile 3D-Printer for Buildings Construction, (2016). https://geopolymer.org/fichiers/gpcamp-2016.

54. B. Panda, Development of 3D-Printed Geopolymer Cement for Sustainable Construction, (2016). https://geopolymer.org/fichiers/gpcamp-2016.

55. G. Franchin, H. Elsayed, P. Scanferla, A. De Marzi, F. Gob-bin, L. Zeffiro, A. Conte, A. Italiano, P. Colombo, Direct and Indirect 3D Printing with Geopolymers, (2016). https://geopolymer.org/fichiers/gpcamp-2016.

56. S. Ma, S. Fu, S. Zhao, P. He, G. Ma, M. Wang, D. Jia, Y. Zhou, Direct ink writing of geopolymer with high spatial reso-lution and tunable mechanical properties, Addit. Manuf. 46 (2021) 102202. https://doi.org/10.1016/j.addma.2021.102202.

57. S. Pilehvar, V.D. Cao, A.M. Szczotok, M. Carmona, L. Val-entini, M. Lanzón, R. Pamies, A.L. Kjøniksen, Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials, Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.016.

58. J. Archez, S. Maitenaz, L. Demont, M. Charrier, R. Mesnil, N. Texier-Mandoki, X. Bourbon, S. Rossignol, J.F. Caron, Strategy to shape, on a half-meter scale, a geopolymer compo-site structure by additive manufacturing, Open Ceram. 5 (2021) 100071. https://doi.org/10.1016/j.oceram.2021.100071.

59. A. Rintala, J. Havukainen, M. Abdulkareem, Estimating the Cost-Competitiveness of Recycling-Based Geopolymer Con-cretes, Recycling. 6 (2021) 46. https://doi.org/10.3390/recycling6030046.

60. N. Verardi, R. Frezzato, M. Benvenuti, Ferrosialate Geopol-ymer Binder and 3D Printing, (2022). https://geopolymer.org/fichiers/gpcamp-2022.

61. Ibragimov, R.A., Korolev, E.V., Kayumov, R.A., Deberdeev, T.R., Leksin, V.V., Sprince, A. Efficiency of activation of min-eral binders in vortex-layer devices. Magazine of Civil Engi-neering. 2018. 82(6). Pp. 191–198. DOI:https://doi.org/10.18720/MCE.82.17

62. N. Ranjbar, M. Zhang, Fiber-reinforced geopolymer compo-sites: A review, Cem. Concr. Compos. (2020). https://doi.org/10.1016/j.cemconcomp.2019.103498

63. S.V. Samchenko, O.V. Aleksandrova, A.A. Zaitseva Aerated Concrete Based on Cullet and Liquid Glass // Materi-als Science Forum. ISSN: 1662-9752. Volume 974. - 2020. pp. 362-366. - https://doi.org/10.4028/www.scientific.net/MSF.974.362 .

Войти или Создать
* Забыли пароль?